
IEEE TRANSACTIONS ON INFORMATION FORENSICS & SECURITY, VOL. XX, NO. XX, MARCH 2024 1

Towards Efficient Key Extraction of LBC over
Ring: Fast Non-spherical G-lattice Sampler

and Optimized Perturbation Generation
Hai Lu, Yan Zhu, Member, IEEE, Cecilia E Chen, Member, IEEE, and Di Ma, Member, IEEE,

Abstract—In the light of the advantages of ring, more and more
Lattice-Based Cryptography (LBC) schemes are designed over it
to provide small storage cost and high performance. Gaussian
Sampler for Lattice Trapdoor (GSLT) plays an important role
for these schemes, especially for key extraction. In this paper,
we present an efficient GSLT scheme with On-line and Off-line
stages. In the On-line stage, we extend the fast non-spherical
Gadget-lattice sampling into the ring setting for high perfor-
mance, and analyze the covariance matrix of output vectors.
Subsequently, two optimized perturbation sampling constructions
are designed for non-spherical Gadget-lattice sampler to avoid
inefficient Cholesky decomposition during Off-line stage. The
first construction aims to the spherical Gaussian distribution
of preimage vectors, which is beneficial for theoretical analysis.
In contrast, the second one is designed on the non-spherical
distribution to improve the efficiency of perturbation sampling
without leakage of trapdoor in statistic, and we further provide
the method how to choose the Gaussian parameters. The com-
plexity analysis and experimental results show that the On-line
stage of our scheme has a better performance in comparison with
the other works. In the Off-line stage, both of two perturbation
sampling constructions can avoid low efficiency of Cholesky
decomposition, and are more suitable for the non-spherical G-
lattice sampling. In short, our work provides two candidates
on either Gaussian parameter or sampling efficiency, thereby
offering more options for key generation in LBC schemes.

Index Terms—Lattice-based Cryptography, Fast Non-spherical
G-lattice Sampling, Ring Setting, Optimized Perturbation Gen-
eration.

I. INTRODUCTION

Lattice-Based Cryptography (LBC), as typified by anti-
quantum cryptography, has gained more attentions with
fast development of quantum computing. Michele Mosca, a
founder of the University of Waterloo’s Institute of Quantum
Computing, believes that “quantum computing has a one-in-
seven chance of breaking RSA-2048 encryption by 2026 and
a 50-50 chance of doing so by 2031”. To end it, many LBC
schemes have been designed to provide anti-quantum security
for various kinds of scenarios. These LBC schemes can also be
applied for anti-forensics to protect the privacy of core secret.

As an important component, Gaussian Sampling for Lattice
Trapdoor (GSLT) is widely employed to construct key genera-
tor in various kinds of LBC encryption schemes. For example,

H. Lu, Y. Zhu and C. E Chen are with the School of Computer and Commu-
nication Engineering, University of Science and Technology Beijing, Beijing,
100871 China (e-mail: luhai@xs.ustb.edu.cn; zhuyan,chene@ustb.edu.cn).

D. Ma is with the Computer and Information Science Department, College
of Engineering and Computer Science, University of Michigan-Dearborn,
Michigan 48128, USA (e-mail: dmadma@umich.edu).

GSLT is usually used as key extraction algorithm in some en-
cryption schemes, such as Identity-Based Encryption [1], [2],
Attribute-Based Encryption [3], [4], and Fully Homomorphic
Encryption [5].

System Manager

Gaussian

Sampler

Trapdoor

Identity of

Decryptor

System

Public Key

Decryptor

 Private Key of

Decryptor

Decrypt Message

Encryptor

EncryptMessage Ciphertext

Identity of Decryptor

Short Preimage

Vector

Fig. 1. Diagram of the LBC identity-based encryption.

We take the Identity-Based Encryption scheme as an exam-
ple, and provide the simplified diagram of it shown as Fig.
1. The encryptor can encrypt the message to the ciphertext
by system public key and the decryptor’s identity, and the
decryptor can use his unique private key to decrypt it. In the
process, the system manager needs to invoke the Gaussian
sampler through his trapdoor to extract the short preimage
vector as the decryptor’s private key that cannot be forged by
the attackers. This key extraction essentially solves the Short
Integer Solution (SIS) problem with the trapdoor of system
manager. Given the modulus q, the trapdoor T, the public
matrix A ∈ Zn×m

q , a syndrome u ∈ Zn
q and bound parameter

β > 0, it can search the vector x ∈ Zm
q satisfying Ax = u

and ∥x∥ ≤ β. It is hard for attackers to search the short
preimage vector without the trapdoor T, so as to ensure the
unforgeability of private key corresponding to any identity.

Micciancio and Peikert [6] presented an efficient GSLT
scheme (in short MP12) with a specific framework. MP12 no
longer focuses on constructing the short basis as the trapdoor,
but rather on exploring a special lattice, i.e., Gadget-lattice
(G-lattice), for more efficient sampling. Hence, the G-lattice
sampling algorithm is easy-to-sample and parallelizable. In the
aspect of preimage sampling, MP12 regards the linear factor
as the trapdoor T, and maps the vector sampled from G-lattice
to that of the specific lattice by linear transformation. MP12’s
framework consists of two stages:

• Off-line stage: which is used to sample perturbation

IEEE TRANSACTIONS ON INFORMATION FORENSICS & SECURITY, VOL. XX, NO. XX, MARCH 2024 2

TABLE I
COMPARISON OF G-SAMPLING ALGORITHMS IN [9] AND [7]

Integer
arithmetic

Floating point
arithmetic

Calls to
SampleZ

Integer
storage

Floating point
storage

GM18 13k 7k 2k 2k 4k
HJ19 2k 1 k 3k 1

vector p according to the specific covariance matrix. This
stage is designed for security, and used to cover the sta-
tistical trace of trapdoor caused by linear transformation.
Moreover, it can be performed in advance.

• On-line stage: which involves two main steps as follows:

1) G-lattice sampling: which is used to sample a
vector z from the specific coset of G-lattice with
a discrete Gaussian-like distribution.

2) Linear transformation: which is used to linearly

expand z to y = p +

[
T
I

]
· z according to the

precomputed perturbation p and trapdoor T.

As shown above, because the off-line stage can be carried
out in advance, the computation and storage cost of on-
line stage directly affects the efficiency of GSLT, further
influences the performance of LBC. As an important role of
on-line stage, a G-lattice sampling algorithm with low time and
space complexity does not only indicate a high-performance
GSLT scheme, but also facilitates the equipment with limited
computation ability.

Under the above MP12’s framework, Hu and Jia (HJ19) [7]
presented a fast non-spherical G-lattice sampling algorithm.
Given a n-dimensional syndrome u ∈ Zn and an arbitrary
modulus q, this algorithm controls the final component of
output vector z to make z belong to the specific coset of
G-lattice. Unlike traditional G-lattice sampling algorithms [6],
[8], [9], the output vectors follow a non-spherical Gaussian dis-
tribution. It essentially sacrifice the efficiency of perturbation
sampling to improve the performance of G-lattice sampling.
Under an arbitrary modulus, HJ19 can achieve linear time
and space complexity, and its performance is better than
that of MP12 (it operates on real in O(nlogq)2 time and
O(logq)2 space with preprocessing, such as Gram-Schmidt
orthogonalization). Comparing with GM18 [9] that can also
achieve linear time and space complexity, the performance of
HJ19 is also better, as shown in Table I.

Recently, on the basis of more efficient Ring-LWE (R-LWE)
[10], more LBC schemes [11]–[13] are designed under the ring
setting to provide small storage cost and high performance.
However, HJ19 [7] only focuses on the construction of fast
non-spherical G-lattice sampler, but give no deep discussion
of the method how to apply it into GSLT scheme under
the ring setting. Specifically, it does not give the specific
method to convert the non-spherical G-lattice sampler to the
one under the ring setting, as well as the analysis of covariance
matrix. Moreover, HJ19 [7] indicates that the efficiency of the
presented fast non-spherical G-lattice sampler in the on-line
stage is built on the increased computational cost in the off-line
stage. However, this work does not provide the reasons and
analyze how to reduce the computational cost in the off-line

stage. Therefore, this paper mainly considers these problems,
and discusses how to construct a GSLT scheme under ring
setting based on the fast non-spherical G-lattice sampler.

Contributions: This paper mainly explore the specific imple-
mentation of more efficient GSLT scheme over ring to provide
anti-quantum and anti-forensics. Aiming to the fast non-
spherical G-lattice sampler, our scheme carries out exploratory
researches on both on-line stage and off-line stage in GSLT
over ring. The contributions are shown as follows:

• We extend HJ19’s integer G-lattice sampling algorithm
to the ring setting. Furthermore, the covariance matrix of
the output vectors from this G-lattice sampling algorithm
are provided. Despite the covariance matrix belongs to
Pn, each entry of this matrix is a constant rather than a
polynomial. Therefore it may be stored as a real matrix
to reduce the storage cost. Meanwhile, it can be operated
as a real matrix in calculation for some special cases.

• In order to reduce the computation and storage cost
of perturbation sampling algorithm, we introduce the
main idea of GM18’s perturbation sampling into our pre-
sented GSLT scheme over ring by avoiding the inefficient
Cholesky decomposition. Furthermore, two new con-
structions on perturbation sampling, SampleP1overRing
and SampleP2overRing, are presented under different
Gaussian parameters. The former aims to the spherical
Gaussian distribution of preimage vector, and the latter
is designed on non-spherical Gaussian distribution to
improve the efficiency of perturbation sampling without
leakage of trapdoor in statistic. Moreover, we analyze
how to choose the Gaussian parameters for the Sam-
pleP2overRing.

These two constructions offer two candidates on either Gaus-
sian parameter or sampling efficiency for preimage sampling.
SampleP1overRing facilitates theoretical analysis across vari-
ous LBC cryptosystems, whereas SampleP2overRing is more
suited for practical applications such as the key generation
or the signature implementation in LBC cryptosystems. As a
result, an appropriate construction can be selected according to
different requirements of LBC design. More details are shown
in the last paragraph of Sec. V-B.

Current state of the art. Traditional GSLT scheme [8]
over integer lattices usually uses Ajtai’s trapdoor generation
algorithm [14] to produce a public hard basis and a “good”
short basis of a random integer lattice, where the short basis is
regarded as the trapdoor. In the aspect of Gaussian preimage
sampling, this scheme presented a Gaussian sampling algo-
rithm, called Randomized Nearest Plane (RNP). It can sample
vectors from the discrete Gaussian distribution of the specific
integer lattice according to the trapdoor (i.e., the generated

IEEE TRANSACTIONS ON INFORMATION FORENSICS & SECURITY, VOL. XX, NO. XX, MARCH 2024 3

short basis). Furthermore, Alwen and Peikert [15] improved
the work of [14], and presented two kinds of trapdoor gen-
eration algorithms, where the quality of generated trapdoor is
asymptotically optimal in the second construction. However,
these two constructions involve many costly operations, such
as seeking Hermite normal form and inverse matrix for a
specific matrix.

Micciancio and Peikert [6] (i.e., MP12) improved the work
of [8], and presented a GSLT scheme over integer lattice based
on a special lattice, i.e., G-lattice. In the aspect of trapdoor
generation, this scheme regards a randomly generated matrix,
which is used for linear transformation, as the trapdoor T
rather than a short basis, then extend another random matrix
into a public matrix A according to T. In the aspect of
Gaussian preimage sampling, MP12 consists of both on-line
and off-line stages, where on-line stage involves G-lattice
sampling and linear expansion, and off-line stage involves
perturbation sampling.

When the modulus q = 2k, MP12 provides an optimized G-
lattice sampling algorithm. The time complexity is O(nlogq),
and the space complexity is O(logq). However, this case
cannot meet the requirement of actual cryptographic scheme.
When q is an arbitrary prime integer, MP12 can only use the
inefficient RNP algorithm to sample vectors from G-lattice.
The time complexity is O(nlog2q), and the space complexity
is O(log2q). Genise et al. [9] (GM18) presented a fast G-
lattice sampling algorithm under an arbitrary modulus. This
algorithm decomposes the basis of G-lattice into a approxi-
mately orthogonal basis used for sampling and a matrix used
for linear factor. Then, this algorithm linearly maps the vector
sampled by the basis into the G-lattice. The time complexity
of this algorithm is O(nlogq) which is faster than MP12. Hu
et al. [7] also presented a fast G-lattice sampling algorithm
under an arbitrary modulus. Despite the output vector follows
a non-spherical Gaussian distribution, this algorithm avoids
perturbation sampling in on-line stage, and achieves lower time
and space complexity than GM18.

In order to apply the GSLT scheme over integer lattice to the
ring setting, several works [9], [11], [12], [16] are presented.
In the aspect of G-lattice sampling over ring, Bert et al. [11]
converts the basis B over Rq into its anti-circular form ϕn(B),
and directly sample vectors according to the basis ϕn(B) by
RNP algorithm. In the aspect of perturbation sampling, GM18
provides a fast perturbation sampling algorithm under the ring
setting, which can avoid the inefficient Cholesky decomposi-
tion, and achieve the quasi-linear time complexity. Moreover,
Bert et al. [16] applied GM18’s perturbation sampling to
another hard problem, i.e., Module SIS (M-SIS) problem.

In order to reduce the dimensions of lattice and improve
the performance of LBC scheme, Chen et al. [17] pre-
sented the Approximate Inhomogeneous Short Integer Solution
(Approximate-ISIS) problem, and reduce its hardness to the
LWE problem. Based on this hard problem, Chen et al. [17]
design a novel GSLT scheme with an approximate trapdoor.
Jia et al. [18] further introduce the non-spherical Gaussian
distribution into the above work, and discuss the choice of
parameter in terms of security and storage cost under the ring
setting.

II. PRELIMINARY

We use R and Z to denote real numbers and integers,
respectively. Vectors (in column form) are represented by bold
lower-case letters, e.g., v, and the i-th component of v is
denoted by vi. Matrices are written as bold capital letters, e.g.,
B. Note that Ik is used to denote an k-dimensional identity
matrix. In this paper, l2 norm is used to measure the length of
a vector v, i.e., ∥v∥, and the length of a matrix B is measured
by ∥B∥ = maxi∥bi∥. For any two matrices A and B, A⊗B
is used to denote their tensor product.

Moreover, we use Σ ≻ 0 (resp., Σ ⪰ 0) to denote Σ
is positive definite (resp., semidefinite) if xtΣx > 0 (resp.,
xtΣx ≥ 0) for all nonzero x ∈ Rm. For clarity, Σ ⪰ ηIm
(resp., Σ ≻ ηIm) is abbreviated as Σ ⪰ η (resp., Σ ≻ η).

Suppose that Σ =

[
A B
Bt D

]
∈ Rm×m, where D is a principal

submatrix of Σ and invertible. D’s Schur component in Σ
is defined as Σ/D = A − BD−1Bt. For any real matrix
B ∈ Rm×n, Si(B) is denoted as the i-th singular value of B,
and S1(B) = maxu∥Bu∥ = maxu∥Btu∥, where the maxima
are taken over all units vectors u ∈ Rk.

A. Lattices, Gaussians and Ideal Lattices

Lattices: A lattice Λ is a discrete subgroup of Rm. It can
be defined as Λ = L(B) = {Bz : z ∈ Zm} by m linearly
independent vectors B = {b1,b2, · · · ,bm}. Λ∗ = {x ∈ Rn :
∀v ∈ Λ,x · v ∈ Z} represents the dual lattice of Λ.

Let n,m, q ∈ Z+, A ∈ Zn×m
q and u ∈ Zn

q . Most current
LBC schemes usually use the lattices defined by: Λq(A) = {x ∈ Zms.t.∃s ∈ Zn,Ats = xmodq},

Λ⊥
q (A) = {x ∈ Zms.t.Ax = 0modq},

Λu
q (A) = {x ∈ Zms.t.Ax = umodq},

(1)

where, q is a prime modulus, and u is a syndrome. Note that
the two lattices Λq(A) and Λ⊥

q (A) defined above are dual.
Moreover, Λu

q (A) is regarded as the “shifted lattice” of Λ⊥
q (A)

for an arbitrary syndrome u ∈ Zn
q . If t ∈ Λu

q (A), Λu
q (A) =

Λ⊥
q (A) + t.

Gaussian distribution: Suppose that σ > 0 is a positive
Gaussian parameter and c ∈ Zm is a center. The Gaussian
function of a lattice Λ ⊂ Zm is defined as ∀x ∈ Λ, ρσ,c(x) =
exp(−π∥x−c∥2/σ2). Then, the discrete gaussian distribution
of Λ ⊂ Zm can be defined as DΛ,σ,c as ∀x ∈ Λ, DΛ,σ,c(x) =
ρσ,c(x)/ρσ,c(Λ), where ρσ,c(Λ) =

∑
y∈Λ ρσ,c(y). For clarity,

we rewrite ρσ,0 as ρσ , if the center is 0. Furthermore, we define
the skewed gaussian function ρ√Σ,c as ∀x ∈ Λ, ρ√Σ(x) =

exp(−π(x− c)tΣ−1(x− c)), and the corresponding discrete
gaussian distribution is denoted by DΛ,

√
Σ,c.

Here, we provide some definitions related to smoothing
parameter ηϵ(Λ) of a lattice Λ ⊂ Rm, shown as follows:

Definition 1 ([19], [20]): Suppose Λ ⊂ Rm be a lattice
with a basis B and B̃ be the Gram-Schimidt orthogonalization
of B. Then, for any ϵ > 0, we have ηϵ(Λ) ≤ ∥B̃∥ ·√
ln(2m(1 + 1/ϵ))/π.
Definition 2 ([8], Lemma 3.1): For any m-dimensional

lattice Λ, center c ∈ Rm, reals 0 < ϵ < 1 and σ ≥ ηϵ(Λ), if
x is from the distribution DΛ,σ,c, then we have Pr[∥x− c∥ >
σ
√
m] ≤ 1+ϵ

1−ϵ · 2
−m.

IEEE TRANSACTIONS ON INFORMATION FORENSICS & SECURITY, VOL. XX, NO. XX, MARCH 2024 4

Ideal Lattice: In this paper, we mainly consider the special
ideal lattice with a polynomial structure. Let n is a power
of 2. We represent R as the ring Z[x]/⟨xn + 1⟩ and set
Rq = R/qR = Zq[x]/⟨xn + 1⟩. Moreover, Pi is defined
as R[x]/⟨xi + 1⟩ for an arbitrary integer i, note that both
of R and Rq can be regarded as subsets of Pn. Suppose
that a polynomial a =

∑n−1
j=0 ajx

j ∈ Pn, where aj is the
j-th coefficient of a. In this paper, the coefficient vector
a = (a0, a1, · · · , an−1) is equivalent to the polynomial a,
and the coefficient vector a can be denoted as a = γ(a). ϕn

is represented as the ring homomorphic mapping from Pn to
Rn×n. For an element a =

∑n−1
j=0 ajx

j ∈ Pn, we have

ϕn(a) =

a0 −an−1 · · · −a1

a1 a0
...

...
. . . −an−1

an−1 · · · a1 a0

 . (2)

Moreover, ϕi() and γ() can be also extended to matrices
and vectors over Pi respectively by component-wise appli-
cation. We take v ∈ Pm

n as an example, and have γ(v) =
(γ(v1), γ(v2), · · · , γ(vm)).

B. Trapdoor Preimage Sampling Algorithm over Ring from
MP12

Several works [11], [12], [16], [21] have applied MP12
to the ring setting. Algorithm 1 [12] provides the details of
trapdoor construction:

Algorithm 1 TrapGen(q, σ, n)
Input: A ring modulus q, a Gaussian parameter δ, an integer
n that is power of 2, k = ⌈log2q⌉.
Output: A public vector a ∈ Rk+2

q and trapdoor T =
(t1, t2) ∈ R2×k

q .
1: a ←R Rq , which represents randomly choosing a from

Rq .
2: t1 ← (t

(1)
1 , t

(1)
2 , · · · , t(1)k)t, where t

(1)
i ← DR,σ for i =

1, · · · , k.
3: t2 ← (t

(2)
1 , t

(2)
2 , · · · , t(2)k)t, where t

(2)
i ← DR,σ for i =

1, · · · , k.
4: a← (1, a, g1 − (t

(1)
1 + at

(2)
1), · · · , gk − (t

(1)
k + at

(2)
k)).

5: return a,T = (t1, t2)
t.

Note that, gi ∈ R for i ∈ [1, k] is the i-th element of
g = (1, 2, 22, · · · , 2k−1) ∈ Rk

q . Combined with the above
trapdoor, MP12’s GSLT over ring is shown as Algorithm 2.

Algorithm 2 includes two important functions:
1) Perturbation sampling function

SamplePoverRing(n, k, q,Σs,T, σ). It takes
n, k, q,Σs,T and σ as inputs, and outputs a perturbation
p ∈ DR,Σp

, where Σp is the covariance matrix of p,
and it can be computed according to Σs,T and σ.

2) G-lattice sampling function over ring
SampleGoverRing(n, k, q, σ, v). It takes n, k, q, σ
and v as inputs, and outputs a vector z ∈ DR,ΣG

, where
ΣG is the covariance matrix of z, and is related to σ.

Algorithm 2 SamplePreoverRing(a,T, u, σ,Σs)

Input: Public vector a, trapdoor T, syndrome u ∈ Rq ,
Gaussian parameter σ used for G-lattice sampling, Gaussian
parameter Σs used for preimage sampling.
Output: z← DRq,Σs

.
Off-line stage:

1: Sample a perturbation vector p ←
SamplePoverRing(n, k, q,Σs, σ) ∈ Rk+2.

On-line stage:
1: Compute v = u− ap ∈ Rq .
2: Sample z← SampleGoverRing(n, k, q, σ, v) ∈ Rk.

3: Compute y = p+

[
T
I

]
z ∈ Rk+2

q .

4: return y.

III. TECHNIQUE OVERVIEW

Fig. 2 provides the technique overview of our GSLT
scheme, including On-line and Off-line stages. In the Off-
line stage, we present two new perturbation sampling con-
structions, SampleP1overRing and SampleP2overRing, tai-
lored specifically for the non-spherical G-lattice sampling.
Construction 1 facilitates theoretical analysis across various
LBC cryptosystems, whereas Construction 2 is more suited
for practical applications such as the key generation or the
signature implementation in LBC cryptosystems. To reduce
the computational cost, each of two constructions is equipped
with a precomputation algorithm (SampleP1-Precomp or
SampleP2-Precomp) to generate intermediate parameters.
During the On-line stage, we provide a rearranging method to
extend the fast non-spherical G-lattice sampling algorithm into
the ring setting to efficiently sample G-lattice vectors. Finally,
the G-lattice vectors are linearly expanded to the preimage
vectors according to the pre-sampled perturbation vectors. The
technical details are elaborated in terms of On-line and Off-
line stages, shown as follows:

1) On-line stage: The work [21] introduced the rearranging
method, yet the authors only analyzes the covariance matrix
of the output vector when employing spherical integer G-
lattice sampling. In this paper, we extend the fast non-spherical
G-lattice sampling into the ring setting, and analyze the
covariance matrix of output vectors under this rearrangement.
According to the special structure of the covariance matrix, it
can be stored and operated as a real matrix despite it is actually
a matrix with elements in polynomial ring. Such a special
structure not only enhances the efficiency of perturbation
sampling, but also reduces the storage requirements of this
matrix.

2) Off-line stage: To avoid the inefficient Cholesky decom-
position, two perturbation sampling constructions are designed
for the non-spherical G-lattice sampling. The main idea of the
presented constructions are summarized as follows:

(1) For the given covariance matrix Σp ∈ Pk+2
n of pertur-

bations, a vector ps ∈ Rk is sampled according to the
easy-to-sample portion of Σp. As a result, Σp is reduced
to a (2× 2)-dimensional matrix Σ over Pn.

IEEE TRANSACTIONS ON INFORMATION FORENSICS & SECURITY, VOL. XX, NO. XX, MARCH 2024 5

Preimage Gaussian Sampling

Scheme over Ring

Off-line Stage

On-line Stage

Perturbation Sampling

Construction 1

SampleP1overRing

Perturbation Sampling

Construction 2

SampleP2overRing
or

Off-line Stage

Prcomputation

SampleP1-Precomp
Prcomputation

SampleP2-Precomp
or

Intermediate Parameters

On-line Stage

Linear Expansion

(Output preimage vectors)Includes

Perturbation Vectors

G-lattice Vectors
G-lattice Sampling Scheme over Ring

SampleGoverRing

Fig. 2. Technique overview of our GSLT scheme.

(2) The vector (p1, p2) ∈ R2
q can be then extracted based

on the Σ through iteratively sampling. Finally, the per-
turbation p = (p1, p2,ps) ∈ Rk+2 can be obtained by
combining (p1, p2) with ps.

Next, the difference between GM18 [9] and our presented
constructions can be described as follows. GM18 mainly
focuses on spherical G-lattice sampler, but this method cannot
be directly used for the non-spherical G-lattice sampling. The
reason is that the distribution of final preimage vectors will
leak the trapdoor information in statistics. In order to reduce
the cost of perturbation sampling, we design two constructions
on perturbation sampling which are suitable for the fast non-
spherical G-lattice sampler. The Construction 1 is tailored for
the spherical distribution of preimage vectors, but its time &
space complexity is high, and it needs high computational
accuracy. The reason is that the easy-to-sample part of Σp

no longer corresponds to a spherical Gaussian distribution. To
reduce the computational cost during the Off-line stage, the
Construction 2 is presented by modifying the easy-to-sample
portion. Despite the final preimage vector follows a non-
spherical Gaussian distribution by using this construction, the
Gaussian parameter will not leak the information of trapdoor
in statistics.

IV. FAST NON-SPHERICAL G-LATTICE SAMPLING
ALGORITHM OVER RING

In this section, we introduce how to extend the fast non-
spherical G-lattice sampling algorithm in HJ19 to the ring
setting. Before the description, we recall the G-lattice and G-
lattice sampling algorithm in HJ19.

G-lattice is defined as Λ⊥
q (G) based on a special matrix

G = In⊗gt ∈ Zn×kn, where gt = (1, 2, · · · , 2k−1). Given a
syndrome u = (u1, u2, · · · , un) ∈ Zn, the G-lattice sampling
algorithm can be carried out by independently sampling n
vectors from DΛ

ui
q (gt),σ for i ∈ [1, n], where σ is the Gaussian

parameter.
HJ19 provides a fast non-spherical G-lattice sampling algo-

rithm to capture vectors from Λu
q (g

t) with a parameter σ, the
details are shown in Algorithm 3.

Algorithm 3 HJ19-SampleG(n, k, q, σ, u)

Input: parameter n, k and q, Gaussiann parameter σ used for
G-lattice sampling and an arbitrary syndrome u ∈ Zq;
Output: a vector z following the distribution DΛu

q (g
t),

√
σ2Σ0

.
1: Let u = [u]k2 and q = [q]k2 be the bit sequences of u and

q, respectively.
2: Compute c = −u

q , and choose y ← DZ,σ2 ,c.
3: v = u+ y · q, where v = (v1, v2, · · · , vk).
4: for i ∈ [1, k − 1] do
5: Choose zi ← D2Z+vi,σ .
6: Set vi+1 = vi+1 +

vi−xi

2 ∈ Z.
7: end for
8: Set zk = vk.
9: return z = (z1, z2, · · · , zk).

In this algorithm, the covariance matrix of z equals to σ2Σ0

rather than σ2I in MP12 and GM18, where

Σ0 =

 Ik−1

−
(
1
2

)k−1

...
− 1

2

−
(
1
2

)k−1 · · · − 1
2

α

 ∈ Rk×k, (3)

and α =
∑k−1

i=1

(
1
4

)i
+ q2

4k
. It means that z follows a non-

spherical Gaussian distribution.
In the light of the fact that G-lattice sampling algorithm in

HJ19 is more efficient than the other algorithms (as shown
in Table I), we intend to use the idea from the work of [21]
to convert the HJ19’s G-lattice sampling to the ring setting.
Unlike the work [11], the main idea is shown as Fig. 3.

Notice that gt = (1, 2, · · · , 2k−1) ∈ Rk
q is regarded as the

vector over Rq in the top half of Fig. 3, while gt ∈ Zk
q is in

the bottom part of Fig. 3. Here, z(j)i ∈ Z and ui ∈ Z denotes
the i-th coefficient of zj ∈ Rq and u ∈ Rq , respectively. As
shown in Fig. 3, the operation for sampling a vector z =
(z1, z2, · · · , zk) ∈ Rk

q from Λu
q (g

t) = {z ∈ Rk
q ,g

t ∈ Rk
q |gt ·

z = u} can be carried out by sampling the integer vector
z′ = (z

(1)
1 , z

(2)
1 , · · · , z(k)1 , · · · , z(1)n , · · · , z(k)n) ∈ Zkn from the

integer G-lattice Λu
q (G) = {G ∈ Zn×nk, z′ ∈ Znk

q |Gz′ =

IEEE TRANSACTIONS ON INFORMATION FORENSICS & SECURITY, VOL. XX, NO. XX, MARCH 2024 6

1 1

1 2

1 2

11 1 1

1 2

22 2 21 1

1 2

0

0

22 2

2 22

t k

k

k

k

k

k

nn n n

z z z u

uz z z

uz z z

uz z z

g z

 1 2 1 2

1 1 1 1 2, , , , , , , , , , ,

t

t
k k

n n n n

t

z z z z z z u u u

g

g

g

The G-lattice Sampling over Ring (SampleGoverRing)

The Integer G-lattice Sampling (HJ19-SampleG)

C
o

n
v

er
t

Fig. 3. The rearranging method to convert integer G-lattice sampling to that over ring.

umod q} for u = γ(u), i.e., the coefficient vector of u. The
steps of Fig. 3 are shown as follows:

1) Invoke G-lattice sampling algorithm to sample a vector
z′ ∈ Zkn from Λu

q (G);
2) Rearrange z′ into z = (z

(1)
1 , z

(1)
2 , · · · , z(1)n , · · · ,

z
(k)
1 , · · · , z(k)n) according to the Fig. 3. Then, this co-

efficient vector z can be regarded as the vector z =
(z1, · · · , zk) over Rq . Here, we use Rearrange() to
denote this rearranging process for clarity.

Algorithm 4 provides the details of this G-lattice sampling
algorithm over ring.

Algorithm 4 SampleGoverRing(n, k, q, σ, u)
Input: parameter n, k and q, Gaussian parameter σ used for
G-lattice sampling, syndrome u =

∑n
i=1 ui · xi ∈ Rq;

Output: a vector y← DΛu
q (g

t),
√
ΣG

;
1: Initialize z′ = ϕ.
2: for i ∈ [1, n] do
3: Invoke HJ19− SampleG(n, k, q, σ, ui) to sample a

vector (z(1)i , z
(2)
i , · · · , z(k)i).

4: z′ = (z′, z
(1)
i , z

(2)
i , · · · , z(k)i).

5: end for
6: z = ReArrange(z′).
7: return z.

Here, we discuss the covariance matrix ΣG of vectors
sampled from Algorithm 4 shown as follows.

Proposition 1: The output vectors from Algorithm 4 follows
the Gaussian-like distribution DΛu

q (ϕn(gt)),
√
ΣG

, where, u is
the coefficient vector of u, the covariance matrix ΣG = σ2Σ1,
and Σ1 ∈ Rkn×kn is

Σ1 =

 I(k−1)n

−
(
1
2

)k−1
In

...
− 1

2
In

−
(
1
2

)k−1
In · · · − 1

2
In αIn

 . (4)

Proof 1: According to the proof of Theorem 1 from HJ19
[7], the vector sampled from HJ19− SampleG(n, k, q, σ, ui)

follows the non-spherical Gaussian-like distribution
DΛ

ui
q (gt),σ·

√
Σ0

for gt ∈ Zk. Therefore, the covariance
matrix of the z′ in the sixth step is Σ′

G = In ⊗ (σ2 ·Σ0), and
the center is 0.

Then, the order of components in z′ is rearranged by
ReArrange() to get z in the sixth step of Algortihm 4.
According to the definition of covariance matrix, the rows and
columns of Σ′

G should be also rearranged by ReArrange()
to get the covariance matrix ΣG of z, i.e., ΣG = σ2Σ1.
Meanwhile, we also have ϕn(g

t) · z = u for the vector
gt = (1, 2, · · · , 2k−1) ∈ Rk, i.e., z belongs to the integer
lattice Λu

q (ϕn(g
t)). Therefore, the above z follows the Gaus-

sian distribution DΛu
q (ϕn(gt)),σ

√
Σ1

.
In this paper, the above coefficient vector z =

(z
(1)
1 , · · · , z(1)n , · · · , z(k)1 , · · · , z(k)n) ∈ Zkn can be regarded as

the vector z = (z1, z2, · · · , zk) ∈ Rk
q . We further observe that

Σ1 can be also regarded as the anti-circular matrix form of
Σ2 ∈ Pk×k

n , where Σ2 is shown as:

Σ2 =

 Ik−1

− 1
2k−1

...
− 1

2
− 1

2k−1 · · · − 1
2 α

 ∈ Pk×k
n . (5)

For some appropriate matrices, such as T ∈ P2×k
n , we have

ϕn(T) · Σ1 = ϕn(T · Σ2). Therefore, this vector z ∈ Rk
q

actually follows the Gaussian-like distribution DΛu
q (g

t),σ
√
Σ2

for gt ∈ Rk
q . Note that, each entry of Σ2 is a real number

rather than a polynomial. Therefore, this matrix can be stored
and operated as a real matrix in certain calculations, e.g., Step
1 of Algorithm 5 in Section V-A. It can not only improve the
computational efficiency, but also reduce the dimension from
(kn× kn) to k × k.

V. PERTURBATION SAMPLING

Perturbation sampling plays an important role in GSLT
schemes. It can protect the trapdoor from the leakage caused
by the linear transformation. In this section, we suppose

IEEE TRANSACTIONS ON INFORMATION FORENSICS & SECURITY, VOL. XX, NO. XX, MARCH 2024 7

that Σs ∈ R(k+2)n×(k+2)n is the Gaussian parameter that
represents the covariance matrix of preimage vectors sam-
pled from the GSLT scheme over ring. Then the covari-
ance matrix of perturbations is defined as Σp = Σs −[
ϕn(T)

I

]
ΣG

[
ϕn(T)t I

]
∈ R(k+2)n×(k+2)n. For perturba-

tion sampling, the most straightforward method is to decom-
pose Σp into

√
Σp by Cholesky decomposition, and sample

perturbation p ∈ Rk+2 according to
√
Σp. However, this

method is inefficient, because it needs O(nk)3 precomputation
(i.e., Cholesky decomposition), as well as O(nk)2 space
complexity and O(nk)2 time complexity.

To avoid Cholesky decomposition, GM18 provides a fast
perturbation sampling algorithm under the ring setting, and
achieve quasi-linear time complexity. The most important part
of GM18 is the function SampleFz(f, c) that can sample an
element p ∈ R according to a covariance polynomial f ∈ Pn

and a center c ∈ Pn. Moreover, GM18 mainly relies on the
following important lemma.

Lemma 1 ([16], Lemma 5): For any real 0 < ϵ ≤ 1
2 ,

positive integers r and s, vector c = (c1, c2) ∈ Rr+s, positive

definite Σ =

[
A B
Bt D

]
∈ R(r+s)×(r+s) composed of blocks

A ∈ Rr×r, B ∈ Rr×s, D ∈ Rs×s, we define the following
random process:

• x2 ← DZs,
√
D,c2

;
• x1 ← DZr,

√
Σ/D,c1+BD−1(x2−c2)

.

If Σp ⪰ η2ϵ (Zr+s), then this process outputs a vector
x = (x1,x2) ∈ Zr+s whose distribution is statistically
indistinguishable from DZr+s,

√
Σ,c.

However, GM18 only considers the case of spherical G-
lattice sampler, i.e., the sampled G-lattice vector’s covariance
matrix follows ΣG = σ2 · I for some appropriate parameters
σ. For the non-spherical G-lattice sampler, GM18 should set
perturbation’s covariance matrix as

Σp = Σs − σ2
g

[
ϕn(T)

I

]
·
[
ϕn(T)t I

]
(6)

where σ2
g is regarded as the eigenvalue of ΣG. If ΣG = σ2Σ1,

then we have σg = σ ·
√
S1(Σ1). Therefore, the covariance

matrix Σy of final output vectors y = p+

[
T
I

]
z in the linear

expansion process is shown as

Σy = Σp +

[
ϕn(T)

I

]
ΣG

[
ϕn(T)t I

]
= Σs − σ2

g

[
ϕn(T)

I

] [
ϕn(T)t I

]
+

σ2

[
ϕn(T)

I

]
Σ1

[
ϕn(T)t I

]
= Σs +

[
ϕn(T)

I

]
(σ2Σ1 − σ2

gI)
[
ϕn(T)t I

]
,

(7)

and this matrix involves the trapdoor information. Notice that
the structure of (σ2Σ1− σ2

gI) in the above equation is shown

as
(σ2Σ1 − σ2

gI)

=

σ2 − σ2

g −(1
2
)k−1σ2

σ2 − σ2
g −(1

2
)k−2σ2

. . .
...

−(1
2
)k−1σ2 −(1

2
)k−2σ2 · · · ασ2 − σ2

g

 .
(8)

This matrix involves several non-zero entries, and may cause
the leakage of trapdoor information in statistic.

In short, we introduce the main idea of GM18 into the per-
turbation sampling, and design two new constructions that are
suitable for the non-spherical G-lattice sampler. The difference
of them is the choice of Σs that represents covariance matrix
of preimage vectors. According to the different LBC design
requirements, theoretical analysis or practical application, an
appropriate construction can be selected for perturbation sam-
pling. The details will be shown in two next subsections.

A. Construction 1

Being similar to the traditional GSLT schemes over ring,
Construction 1 aims to a spherical Gaussian distribution of the
output preimage vector, i.e., Σs = s2I for some appropriate
s. Therefore, the structure of Σp can be defined as:

Σp = s2I−
[
T
I

]
ΣG

[
T

t
I
]

=

[
s2I2n − σ2TΣ1T

t −σ2TΣ1

−σ2Σ1T
t

s2Ikn − σ2Σ1

] , (9)

where we set T = ϕn(T) for clarity.
Then, we use Lemma 1 to sample p according to the above

Σp. First, we initialize a covariance matrix Σ = (s2Ikn −
σ2Σ1) ∈ Rkn×kn and a center c = 0. Then, a vector ps

is sampled from DZkn,
√
Σ,c. Note that this vector can be

also regarded as ps ∈ Rk, i.e., ps ← D
Rk,
√

s2Ik−σ2Σ2
.

Furthermore, the covariance matrix Σ and center c are updated
as follows:

Σ = Σp/(s2Ink − σ2Σ1)

= s2I2n − σ2TΣ1T
t − σ4TΣ1(s2Ink − σ2Σ1)−1

·Σ1T
t ∈ R2n×2n,

c = −σ2TΣ1(s2Ink − σ2Σ1)−1 · ps ∈ R2n.

(10)

Here, we assume that c = (γ(c1), γ(c2)) for (c1, c2) ∈ R2,
and

Σ =

[
ϕn(a) ϕn(b)
ϕn(b

∗) ϕn(d)

]
, (11)

where, b∗ ∈ Pn satisfies that ϕn(b
∗) = ϕn(b)

t. Fi-
nally, SampleFz() is iteratively invoked to sample a vector
(p1, p2) ∈ R2 according to Σ and c, i.e., sample p2 ←
SampleFz(d, c2) and p1 ← SampleFz(a − bd−1b∗, c1 +
bd−1(p2−c2)) sequentially. According to Lemma 1, the vector
p = (p1, p2,ps) ∈ Rk+2 is the required perturbation.

In order to reduce the time cost for sampling perturba-
tion, two matrices in Equation (10), Σ and TΣ1, can be
precomputed, and stored as matrices over the ring Pn to
reduce the storage cost. Algorithm 5 and 6 give the details
of precomputation and perturbation sampling algorithms.

We provide the optimized operations in Algorithm 5 and 6.

IEEE TRANSACTIONS ON INFORMATION FORENSICS & SECURITY, VOL. XX, NO. XX, MARCH 2024 8

Algorithm 5 SampleP1-Precomp(T, s, s̃, σ)

Input: Trapdoor T, preimage gaussian parameters s, s̃ and
G-lattice sampling gaussian parameter σ;
Output: Two matrices Σt1 ∈ P2×k

n and Σt2 ∈
P2×2
n ;
1: Compute (s2Ik − σ2Σ2)

−1.
2: Compute Σt1 = TΣ2

3: Compute Σt2 = s2I2 − σ2Σt1T
t − σ4Σt1 · (s2Ik −

σ2Σ2)
−1 · Σt

t1 .
4: Compute Σt1 = −σ2 · Σt1(s

2Ik − σ2Σ2)
−1.

5: return (Σt1 ,Σt2).

Algorithm 6 SampleP1overRing(n, k, q, s, s̃, σ,Σt1 ,Σt2)

Input: Parameters n, k and q, Gaussian parameters s, s̃ used
for perturbation sampling, σ used for G-Sampling and two
matrices, Σt1 and Σt2 ;
Output: The perturbation vector p ∈
Rk+2;

1: Sample a vector ps from the distribution
D

Rk,
√

s2Ik−σ2Σ2
.

2: Compute c = (c1, c2) = Σt1ps.

3: Regard Σt2 as
[
a b
b∗ d

]
.

4: Invoke SampleFz(d, c2) to sample p2 ∈ R.
5: Invoke SampleFz(a − bd−1b∗, c1 + bd−1(p2 − c2)) to

sample p1 ∈ R.
6: return p = (p1, p2,ps).

1) In the first step of Algorithm 6, ps ← D
Rk,
√

s2Ik−σ2Σ2

can be carried out by Equation (12) according to the
work [22].⌈√

(s2 − θ2)Ikn − σ2Σ1 ·Dkn
R,1

⌋
θ
, (12)

where, Dkn
R,1 denotes the (kn)-dimensional continuous

Gaussian distribution over R with the Gaussian param-
eter 1, ⌈·⌋θ denotes the randomized rounding operation
with a parameter θ.
If we directly use Cholesky decomposition to com-
pute (

√
(s2 − θ2)Ikn − σ2Σ1), the computation cost is

heavy because the time complexity is O(nk)3. However,
we observe that the structure of ((s2 − θ2)I(k−1)n −
σ2Σ1) is shown as the equation:(s

2 − σ2 − θ2)I(k−1)n

σ2

2k−1 In
...

σ2

2 In
σ2

2k−1 In · · · σ2

2 In (s2 − θ2 − ασ2)In

 . (13)

Because of the above special structure, the Cholesky
decomposition form of this matrix has a fixed structure
shown as the equation,[√

s2 − θ2 − σ2I(k−1)n 0
α′
k−1In · · · α′

1In α′In

]
, (14)

where, α′
i = σ2

2i
√
s2−θ2−σ2

, and α′ =√
s2 − θ2 − ασ2 −

∑k−1
i=1 α′2

i . Therefore, the parameter√
(s2 − θ2)Ikn − σ2Σ1 can be generated directly

without the inefficient Cholesky decomposition
operation. Moreover, this matrix can be also regarded
as a (k × k)-dimensional matrix over Pn, even R.

2) For the first step of Algorithm 5, we need to compute
the inverse of (s2Ik − σ2Σ2) ∈ Pk×k

n . We observe that
each entry of this matrix is a constant rather than a
polynomial. Therefore we can regard it as a (k × k)-
dimensional matrix over R, and compute its inverse,
instead of inversing the (kn × kn)-dimensional matrix
ϕn(s

2Ik − σ2Σ2).

B. Construction 2

According to Construction 1, for some parameter Σs = s2I,
the lower right part of Σp is (s2Ikn − σ2Σ1) that no longer
corresponds to a spherical Gaussian distribution. Both of
sampling and inversing operations for this matrix are more
inefficient than those for (s2 − σ2)Ikn.

In order to improve the efficiency of perturbation sampling,
we set the Gaussian parameter Σs of the output preimage
vector as the equation
Σs =

s2I2n

s̃2I(k−1)n

−σ2 · 1

2k−1 In

...
−σ2 · 1

2 In
−σ2 · 1

2k−1 In · · · −σ2 · 1
2 In s̃2 + σ2 · (α − 1)In

 .
(15)

Clearly, the structure of Σs does not have any information of
T. Therefore, the output vectors will not leak T statistically
despite the output vectors follow a non-spherical Gaussian
distribution.

Moreover, Σp have the following structure:

Σp = Σs −
[
T
I

]
ΣG

[
T

t
I
]

=

[
s2I2n − σ2TΣ1T

t −σ2TΣ1

−σ2Σ1T
t

(s̃2 − σ2)Ikn

]
.

(16)

We observe that the lower right part of Σp is (s̃2 − σ2)Ikn
corresponding to a spherical Gaussian distribution. Therefore,
the operation ps ← DRk

q ,
√
s̃2−σ2 can be carried out by inde-

pendently sampling (kn) integers from the discrete Gaussian
distribution DZ,

√
s̃2−σ2 . Since the inverse of (s̃2−σ2)Ikn can

be easily computed (i.e., 1
s̃2−σ2 Ikn), its Schur complement in

Σp can be easily computed as

Σp/
(
(s̃2 − σ2)Ikn

)
= s2I2n − σ2TΣ1T

t − σ4

s̃2−σ2TΣ2
1T

t ∈ R2n×2n . (17)

Based on the above description, the complete steps of Con-
struction 2 are provided as Algorithm 7 and Algorithm 8.

Our presented constructions are designed for different Gaus-
sian parameters, in order to meet the varying requirements
in the design of LBC schemes. In Construction 1, the Gaus-
sian parameter Σs = s2I has a simple structure (in fact,
it can be operated as a real number). It is beneficial for

IEEE TRANSACTIONS ON INFORMATION FORENSICS & SECURITY, VOL. XX, NO. XX, MARCH 2024 9

Algorithm 7 SampleP2-Precomp(T, s, s̃, σ)

Input: Trapdoor T, preimage gaussian parameters s, s̃ and
G-lattice sampling gaussian parameter σ;
Output: Two matrices Σt1 ∈ P2×k

n and Σt2 ∈
P2×2
n ;
1: Compute Σt1 = TΣ2.
2: Compute Σt2 = s2I− σ2Σt1T

t − σ4

s̃2−σ2Σt1Σ
t
t1 .

3: Compute Σt1 = − σ2

s̃2−σ2Σt1 .
4: return (Σt1 ,Σt2).

Algorithm 8 SampleP2overRing(n, k, q, s, s̃, σ,Σt1 ,Σt2)

Input: Parameters n, k and q, Gaussian parameters s, s̃ used
for perturbation sampling, σ used for G-lattice sampling and
two matrices, Σt1 and Σt2 ;
Output: The perturbation vector p ∈
Rk+2

1: Sample a vector ps from the distribution DRk,
√
s̃2−σ2 .

2: Compute c = (c1, c2) = Σt1ps.

3: regard Σt2 as
[
a b
b∗ d

]
.

4: Invoke SampleFz(d, c2) to sample p2 ∈ R.
5: Invoke SampleFz(a − bd−1b∗, c1 + bd−1(p2 − c2)) to

sample p1 ∈ R.
6: return p = (p1, p2,ps).

analyzing cumulative error constraints and storage space of
preimage vectors in LBC scheme design, e.g., Attribute-Based
Encryption [12] and Identity-Based Encryption [11]. While,
Construction 2 selects the optimized Gaussian parameter with
a greater consideration for sampling efficiency. It might be
a better choice when there are no strict requirements for the
Gaussian parameter [18].

C. Correctness of Construction 1 and Construction 2

The correctness of two constructions is summarized by the
following theorem.

Theorem 2: Suppose that T ∈ R2×k
q is the trapdoor,

s, s, s̃, σ > 0 are four positive real numbers, Σp = Σs −[
T
I

]
ΣG

[
T

t
I
]

is the covariance matrix of perturbation.

If Σp ⪰ η2ϵ (Z(k+2)n), then the algorithms,
SampleP1overRing and SampleP− 2overRing, can
return vectors p ∈ R(k+2) whose distribution is statistically
indistinguishable from D

Rk+2,
√

Σp
.

Before the proof of Theorem 2, we provide the following
lemma:

Lemma 2 ([16], Lemma 6): Let ϵ > 0, r and s be positive

integers, and Σ =

[
A B
Bt D

]
∈ R(r+s)×(r+s) be a positive

definite matrix made out of blocks A ∈ Rr×r, B ∈ Rr×s,
D ∈ Rs×s. If Σp ⪰ η2ϵ (Zr+s), then D ⪰ η2ϵ (Zs) and Σ/D ⪰
η2ϵ (Zr).

Proof 2: In order to simplify description, we let η =
ηϵ(Z(k+2)n). The proof of correctness of Construction 1 is
shown as follows:

According to Lemma 1 and Σp ⪰ η2, the operation for
sampling p ∈ Rk+2 by Σp can be carried out by sampling
two vectors, ps and (p1, p2), where ps ∈ Rk is sampled with
the covariance matrix (s2Ink − σ2Σ1), and (p1, p2) ∈ R2 is
sampled with the covariance matrix Σ = Σp/(s

2Ink − σ2Σ1)
and the center c = −σ2TΣ1(s

2Ink−σ2Σ1)
−1 ·ps. Note that

we have (s2Ink−σ2Σ1) ≻ η2 and Σ ≻ η2 because of Lemma
2 and Σp ⪰ η2.

Let Σ =

[
ϕn(a) ϕn(b)
ϕn(b

∗) ϕn(d)

]
, and c = (γ(c1), γ(c2)).

According to Σ ≻ η2 and Lemma 1, the operation for
sampling (p1, p2) can be carried out by invoking SampleFz ,
i.e., sequentially sampling p2 ← SampleFz(d, c2) and p1 ←
SampleFz(a−bd−1b∗, c1+bd−1(p2−c2)). Moreover, Lemma
2 and Σ ≻ η2 induce that each covariance given to SampleFz

can meet the condition of Lemma 1, i.e., ϕn(d) ≻ η2

and ϕn(a − bd−1b∗) ≻ η2. Therefore, the correctness of
Construction 1 is proven.

Similarly, correctness of Construction 2 can be also proven
by iteratively using Lemma 1 and Lemma 2.

VI. ANALYSIS OF PARAMETERS IN CONSTRUCTION 2

We further analyze how to choose s and s̃ to design the
Gaussian parameter Σs in Construction 2. To do it, the param-
eters of Construction 2 should meet two following conditions:

1) According to Theorem 2, the condition Σp ⪰
η2ϵ (Z(k+2)n) should be met.

2) In order to ensure the correctness of GSLT scheme, the
condition presented in Theorem 2 of HJ19 should also

be met, i.e., Σs ⪰
[
T
I

]
(a+ΣG)

[
T

t
I
]
. It means that

the condition Σp ⪰ a

[
T
I

] [
T

t
I
]

should be met.

Note that there are two cases for generating parameter a in
HJ19: 1

1) If q ≥ 2k−1+ 1
2 , a = q2

q2−4k−1 ∈ (43 , 2). This case is the
optimal case.

2) If q < 2k−1+ 1
2 , the Gaussian parameter should be set

as Σ∗
G = 2 · ΣG, i.e., set the Gaussian parameter of

Algorithm 4 as 2σ. In this case, a = q2

q2−4k−1− 1
2

is also

in (43 , 2).
In this paper, we mainly consider the first case, because it
means a high quality of output vectors. The discussion of s
and s̃ is shown as follows:

For the first condition, we set η = ηϵ(Z(k+2)n), and expect
(Σp − η2I) is a positive definite matrix. Firstly, (Σp − η2I)
have the following construction:

Σp − η2I

=

[
(s2 − η2)I2n − σ2TΣ1T

t −σ2TΣ1

−σ2Σ1T
t

(s̃2 − σ2 − η2)Ikn

]
.

(18)

Therefore, this condition requires that both of (s̃2−σ2−η2)Ikn
and its Schur complement

(Σp − η2I)/((s̃2 − σ2 − η2)Ikn)

= (s2 − η2)I2n −
(
σ2TΣ1T

t
+ σ4

s̃2−σ2−η2TΣ2
1T

t
) (19)

IEEE TRANSACTIONS ON INFORMATION FORENSICS & SECURITY, VOL. XX, NO. XX, MARCH 2024 10

are positive definite matrices. The former requires that s̃ >√
σ2 + η2. For the latter, suppose that sg > S1(Σ1) is a

positive real, so sgI ≻ Σ1. Therefore, we have

σ2TΣ1T
t
+ σ4

s̃2−σ2−η2TΣ2
1T

t

≺
(
σ2 · sg +

σ4·s2g
s̃2−σ2−η2

)
TT

t

= C
s̃2−σ2−η2TT

t
,

(20)

where C = sgσ
2s̃2 − sgσ

2η2 + sgσ
4(sg − 1). According to

Equation (19) and Equation (20), the Schur complement is
positive definite, if

(s2 − η2)I2n −
C

s̃2 − σ2 − η2
TT

t ≻ 0. (21)

For Equation (21), we have

(s2 − η2)I2n − C
s̃2−σ2−η2TT

t

= (s2 − η2)
(
I2n − C

(s2−η2)(s̃2−σ2−η2)
TT

t
)
.

(22)

It requires that I2n − C
(s2−η2)(s̃2−σ2−η2)

TT
t

is positive
definite, i.e., 1 − C

(s2−η2)(s̃2−σ2−η2)
S21(T) > 0. Based on the

above analysis, we have s >

√
C·S2

1(T)
s̃2−σ2−η2 + η2.

For the second condition, we expect Σp − a

[
T
I

] [
T

t
I
]

is a positive definite matrix. Firstly, we observe it has the
following construction:

Σp − a

[
T
I

] [
T

t
I
]

=

[
s2I2n − σ2TΣ1T

t − aTT
t −σ2TΣ1 − aT

−σ2Σ1T
t − aT

t
(s̃2 − σ2 − a)Ikn

]
.

(23)

It requires that both of (s̃2 − σ2 − a)Ikn and its Schur
complement

(Σp − a

[
T
I

] [
T

t
I
]
)/(s̃2 − σ2 − a)Ikn

= s2I2n − σ2TΣ1T
t − aTT

t

− 1
s̃2−σ2−a (σ

2TΣ1 + aT)(σ2Σ1T
t
+ aT

t
)

(24)

are positive definite. The former requires that s̃ >
√
σ2 + a.

Then, we discuss the latter. By using sg > S1(Σ1), we have

(Σp − a

[
T
I

] [
T

t
I
]
)/(s̃2 − σ2 − a)Ikn

≻ s2I2n −
(
(sgσ

2 + a)TT
t
+

(sgσ
2+a)2

s̃2−σ2−a TT
t
)

= s2I2n − C′

s̃2−σ2−aTT
t

, (25)

where, C ′ = (sgσ
2+a)(s̃2−σ2−a)+(sgσ

2+a)2. Therefore,
Equation (25) requires that s >

√
C′

s̃2−σ2−a · S1(T) is met.
Based on the above analysis, the two parameters, s and s̃,

should meet Equation (26). s̃ >
√
σ2 + η2 and s >

√
C·S1(T)

s̃2−σ2−η2 + η2,

s̃ >
√
σ2 + a and s >

√
C′

s̃2−σ2−a · S1(T).
(26)

VII. COMPLEXITY ANALYSIS AND EXPERIMENTS

Recently, more LBC encryption schemes under ring setting
are applied to protect the security of private data in different
scenarios, such as cloud computing [23] and Internet of things
[24]. In the above schemes, GSLT is usually used as the core
technology of the process of key extractor that extracts short
preimage vectors to constitute users’ private keys. Specifically,
the presented GSLT can be employed (but not limited to) the
following LBC encryption:

• Identity-based encryption [11], [12]: which employs
user’s identity as the minimum decryption authorization
unit. In the scheme, the private data is encrypted by the
public key corresponding to a user’s identity, while the
trusted third-party invokes GSLT to extract private key
for this user according to his identity.

• Attribute-based encryption [13], [23]: which uses user’s
attributes as the minimum decryption authorization unit,
and it is more fine-grained than the identity-based en-
cryption. In this scheme, the private data is encrypted by
attributes and policy rather than identity, while the trusted
third-party invokes GSLT to extract private keys for this
user according to his attributes.

• Fully homomorphic encryption [25]: which can per-
form arithmetic operations on encrypted data without
decrypting it. In this scheme, GSLT is used to extract
private keys for users. The security of the encryption
scheme relies on the hardness of finding the trapdoor for
a given lattice function, which is related to problems such
as SIS and LWE over ring.

Therefore, the research of GSLT is meaningful since it
improves the performance of LBC encryption schemes, espe-
cially the key generation process. To estimate the performance
of the presented GSLT, we here provide the time and space
complexity of the presented GSLT scheme over ring, including
off-line and on-line stages, and compare them with some
existing schemes. Furthermore, the experiments are designed
for evaluating the execution time of the presented GSLT
scheme and these existing schemes. These experiments are
implemented by Mathematica with the default computational
accuracy, and executed on 64-bit Windows 10 under Intel(R)
Core(TM) i7-10750H CPU @2.60 GHz, 16.0 G ROM.

A. Off-line stage

In this subsection, we analyze the performance of two
presented constructions on perturbation sampling, including
Construction 1 and Construction 2, in terms of time and
space complexity. Here, we assume that MR and MP2i

are
represented as the execution time of multiplications over
R and P2i . InvP2i

is denoted as the inversion operation
for element over P2i . SampleZ and SampleF represent the
Gaussian sampler over Z and R, respectively. Moreover, the
addition over Pn and the multiplication between a real scalar
and a vector or matrix over Pn are neglected, because these
operations are more efficient than the multiplication over Pn.

As shown in Table II and III, Construction 1 and 2 involve
6k2+8k and 2k2+8k multiplication operations over Pn at the

IEEE TRANSACTIONS ON INFORMATION FORENSICS & SECURITY, VOL. XX, NO. XX, MARCH 2024 11

precomputation stage, respectively. For the perturbation sam-
pling stage, Construction 1 involves k2 extra multiplications
over Pn in comparison with Construction 2, and requires kn
sampling operations on real number. The above analysis also
explains the reason why Construction 1 is less efficient than
Construction 2.

Currently, there lacks the optimized perturbation sampling
for non-spherical G-lattice vectors, thus the MP12’s original
perturbation sampling (i.e., Cholesky decomposition) is con-
sidered as the only choice. However, our presented construc-
tions have better performances in comparison with MP12’s
original method. Suppose that the multiplication MPn

is
regarded as n2 multiplications over R (actually, MPn

can be
further optimized to lower time complexity). The comparison
between MP12 and two constructions is shown as follows:

• Original perturbation sampling: which needs O(nk)3

precomputation (Cholesky decomposition), and operates
on reals in O(nk)2 time complexity.

• Construction 1: which requires O(nk)2 precomputation,
and O(k2 · n · logn) time complexity.

• Construction 2: which requires O(nk)2 precomputation,
and O(k · n · logn) time complexity.

The above results indicate that the efficiency of two construc-
tions is higher than the original one, and are more suitable for
the non-spherical G-lattice sampling.

Furthermore, HJ19 has indicated that high efficiency of
non-spherical G-lattice sampling is implemented on extra
computational overheads of perturbation sampling, but lacks
enough evidences on this point. Therefore, we provide more
analyses by comparing GM18’s perturbation sampling with
our constructions. Table II and III show the time complexity
of precomputation and perturbation sampling algorithms in
these schemes, respectively. It is worthy to note that our con-
structions are aimed at the non-spherical G-lattice sampling,
whereas GM18 is at the spherical one.

TABLE II
THE TIME COMPLEXITY OF PRECOMPUTATION ALGORITHMS

Multiplication
over R

Multiplication
over Pn

Matrix inverse
over Rk×k

GM18 2k - 2k
Construction 1 - 6k2 + 8k 1
Construction 2 - 2k2 + 8k -

As shown in Table II, GM18 only performs 2k multiplica-
tion operations over R, because it only need to precompute
the matrix TTt ∈ R2×2, but the constructions need O(k2)
multiplication operations over Pn. The reason is that the
covariance matrix of output vectors from Algorithm 4 is
ΣG = σ2 ·Σ2 rather than σ2 · I, and ϕn(Σ2) involves several
real numbers. In order to clearly show the execution efficiency
of the above algorithms, two experiments are designed to
estimate their execution time under different parameters:

1) k (i.e., the bits of q) is fixed to 20, and n increases form
8 to 512. The execution time of the three algorithms are
shown as Fig. 4(a).

2) n is fixed to 64, and k increases from 5 to 30. The
execution time of the three algorithms are shown as Fig.
4(b).

3 4 5 6 7 8 9
0.001

0.01

0.1

1

10

100

Ex
ec

ut
io

n
tim

e
of

 p
re

co
m

pu
ta

tio
n

(s
)

Bits of n (bit)

 GM18
 Construction 1
 Construction 2

(a)

10 15 20 25 30
0.01

0.1

1

10

Ex
ec

ut
io

n
tim

e
of

 p
re

co
m

pu
ta

tio
n

(s
)

Bits of q (bit)

 GM18
 Construction 1
 Construction 2

(b)

Fig. 4. Execution time of precomputation

As shown in Fig. 4, as n increases from 8 to 512, the
execution time of GM18’s precomputaion algorithm is 0.002s
- 2.274s, and the execution time of precomputation in Con-
struction 1 and Construction 2 are 0.045s - 129.363s and
0.009s - 15.679s, respectively. When k increases from 10 to
30, the execution time of GM18’s precomputaion algorithm
is 0.023s - 0.066s, and the execution time of precomputation
in Construction 1 and Construction 2 are 0.053s - 2.301s and
0.143s - 0.514s, respectively.

Next, we turn attention to time and space complexity of
perturbation sampling. As shown in Table III, GM18 requires
O(k) multiplication operations over R. However, Construction
1 and 2 need O(k2) and O(k) multiplications on Pn respec-
tively, which are less efficient than those over R. The reason
is that the center is computed as c = Σt1ps in the second
step of Algorithm 6 and Algorithm 8, and ϕn(Σt1) ∈ R2n×kn

involves real entries. The fundamental reason is ΣG = σ2Σ1,
which corresponds to a non-spherical Gaussian distribution,
rather than σ2I. Moreover, Construction 1 samples ps accord-
ing to Equation (12), and ps follows a non-spherical Gaussian
distribution. Consequently, it will cause:

1) Construction 1 needs to call SampleF for (kn) times
rather than SampleZ.

2) Unlike Construction 2, Construction 1 needs to perform
k2 extra multiplication operations to sample ps.

In order to clearly show the execution efficiency of three
perturbation sampling algorithms, two experiments are de-
signed to evaluate their execution time under different param-
eters:

IEEE TRANSACTIONS ON INFORMATION FORENSICS & SECURITY, VOL. XX, NO. XX, MARCH 2024 12

TABLE III
THE TIME AND SPACE COMPLEXITY OF PERTURBATION SAMPLING ALGORITHMS.

Multiplication
over R

Multiplication
over P2i

Inverse
over P2i

Calls to
SampleZ

Calls to
SampleF

Storage
over Pn

GM18 2k 3
∑logn

i=1 MP
2i

∑logn
i=1 InvP

2i
(k + 2)n - 2

Construction 1 - 3
∑logn

i=1 MP
2i

+(k2 + 2k) ·MPn

∑logn
i=1 InvP

2i
2n kn k2 + 2

Construction 2 - 3
∑logn

i=1 MP
2i

+2k ·MPn

∑logn
i=1 InvP

2i
(k + 2n) - 2

1) k is fixed to 20, and n increases form 8 to 512. The
execution time of three algorithms is shown as Fig. 5(a).

2) n is fixed to 64, and k increases from 5 to 30. The
execution time of three algorithms is shown as Fig. 5(b).

3 4 5 6 7 8 9

0.01

0.1

1

10

100

Ex
ec

ut
io

n
tim

e
of

 p
er

tu
rb

at
io

n
sa

m
pl

in
g

(s
)

Bits of n (bit)

 GM18
 Construction 1
 Construction 2

(a)

10 15 20 25 30

0.2

0.4

0.6

0.8

1.0

1.2

1.4

Ex
ec

ut
io

n
tim

e
of

 p
er

tu
rb

at
io

n
sa

m
pl

in
g

(s
)

Bits of q (bit)

 GM18
 Construction 1
 Construction 2

(b)

Fig. 5. Execution time of perturbation sampling

As shown in Fig. 5, when n increases from 8 to 512, the
execution time of GM18’s perturbation sampling algorithm is
0.004s - 7.049s. The execution time of Construction 1 and
Construction 2 are 0.031s - 73.049s and 0.022s - 16.675s,
respectively. When k increases from 10 to 30, the execution
time of GM18’s perturbation sampling algorithm is 0.023s -
0.066s. The execution time of Construction 1 and Construction
2 are 0.530s - 2.301s and 0.143s - 0.514s, respectively.

Since the above experiments are carried out by Mathemat-
ica platform, the accuracy of real numbers will affect the
computational efficiency of the multiplications over P2i for
some integers i. We take the second steps of Algorithm 6
and Algorithm 8 as examples. When n = 128 and k = 20,
the accuracy of the entries of Σt1 should reach 10−6 in
Algorithm 8, while that of Algorithm 6 should reach 10−18. It

makes the execution time for computing center c in Algorithm
6 higher than that of Algorithm 8. The reason of higher
accuracy in Algorithm 6 is that Construction 1 needs to
compute (s2Ik − σ2Σ2)

−1, and the accuracy of each entry
in this matrix is high. It further results in the high accuracy
of Σt1 = −σ2TΣ2(s

2Ik − σ2Σ2)
−1. To clearly show the

executive efficiency of the second steps of Algorithm 6 and
Algorithm 8, we set k = 20, and evaluate the execution time
with n increasing from 8 to 512. The experimental results are
shown in Fig. 6.

3 4 5 6 7 8 9

0.01

0.1

1

10

100

Ex
ec

ut
io

n
tim

e
of

 c
om

pu
tin

g
ce

nt
er

 (s
)

Bits of n (bit)

 Construction 1
 Construction 2

Fig. 6. Execution time of computing center

In summary, we provide two distinct perturbation sampling
constructions tailored specifically for non-spherical G-lattice
sampling. These constructions can avoid the Cholesky de-
composition, and offer two candidates according to different
requirements in LBC design. Our research also provides the
instructive foundation for converting the non-spherical G-
lattice sampling to the spherical one.

B. On-line stage

In this subsection, we design experiments to evaluate the
execution performance of on-line stage in our proposed GSLT
scheme over ring, and compare it with the ones of MP12 and
GM18. Note that their on-line stage includes three following
steps:

1) For a syndrome u ∈ Rq , compute v = u− ap ∈ Rq .
2) Sample a vector z ∈ Rk

q by a specified G-lattice
sampling algorithm over ring.

3) Compute y = p+

[
T
I

]
z ∈ Rk+2

q .

The details of experiments are provided as follows:
1) k is fixed to 20, and n increases from 8 to 512. The

execution time of three algorithms is shown as Fig. 7(a).

IEEE TRANSACTIONS ON INFORMATION FORENSICS & SECURITY, VOL. XX, NO. XX, MARCH 2024 13

2) n is fixed to 64, and k increases from 5 to 30. The
execution time of three algorithms is shown as Fig. 7(b).

2 4 6 8 10
0.001

0.01

0.1

1

10

100
Ex

ec
ut

io
n

tim
e

of
 o

nl
in

e
sta

ge
 (s

)

Bits of n (bit)

 MP12
 GM18
 Ours

(a)

10 15 20 25 30

0.1

1

10

100

Ex
ec

ut
io

n
tim

e
of

 o
nl

in
e

sta
ge

 (s
)

Bits of q (bit)

 MP12
 GM18
 Ours

(b)

Fig. 7. Execution time of on-line stage

As shown in Fig. 7, as n increases from 8 to 512, the
execution time of MP12’s and GM18’s on-line stage are
from 0.234s to 17.711s and 0.02s to 5.498s, respectively. In
comparison with these schemes, the execution time of on-
line stage in our proposed GSLT scheme is only 0.005s to
4.893s. As k increases from 10 to 30, the execution time of
MP12’s and GM18’s on-line stage are from 0.402s to 8.961s
and 0.08s to 0.263s, respectively. The execution time of on-
line stage in our proposed GSLT scheme is only 0.057s to
0.165s. Fig. 7(a) indicates the execution time of GM18 and our
scheme become increasingly close when n > 512. The reason
is that this experiment is used to evaluate the execution time
of the entire on-line stage, including G-lattice sampling and
linear expansion, and the latter further corresponds to multiple
multiplication operations over R. As n gradually increases,
the execution time of G-lattice sampling exhibits a slower
growth rate compared to that of multiplication MR. Actually,
the time complexity of G-lattice sampling is linear (i.e., O(n))
in both GM18 and our scheme, while MR exceeds linear time
complexity (at least O(n · log n)). Consequently, the execution
time of both GM18 and our scheme are relatively close during
the online stage, but the execution time of GM18 cannot be
less than that of ours.

We recall the comparison result in Table I. The non-
spherical one requires fewer arithmetic operations and storage
spaces for integer, and needs fewer sampling operations from
discrete Gaussian distribution (i.e., SampleZ), in contrast with

GM18’s spherical G-lattice sampling. Meanwhile, both arith-
metic operations and storage spaces of floating point numbers
are reduced from O(k) to O(1). Therefore, this G-lattice
sampling has low computational and storage complexity to
make it more suitable for devices with limited computation
and storage capabilities. As a result, our scheme has a better
performance over ring at the on-line stage in comparison with
the existing GSLT schemes.

VIII. CONCLUSION

In this paper, we present a Gaussian sampling scheme for
trapdoor lattice under ring setting based on fast non-spherical
G-lattice sampler and optimized perturbation generation. This
scheme is designed under the MP12’s framework, and consists
of on-line and off-line stages. In the on-line stage, we apply
the fast non-spherical G-lattice sampler to the ring setting
to improve the efficiency. Then, we discover the entries of
covariance matrix of the output vectors are all constants rather
than polynomials. Therefore, it can be operated as a real matrix
in calculation for some special cases. For the off-line stage,
two constructions are designed on generating perturbation. The
first construction aims to spherical Gaussian distribution, but
it needs high computational accuracy and time & space com-
plexity. In order to improve the performance, the second one
is designed on non-spherical Gaussian distribution which will
not leak any information of trapdoor in statistics. Meanwhile,
the discussion of parameter choice for the second construction
is also provided. The complexity analysis and experimental
results show that our scheme has a better performance than
the existing schemes in the on-line stage. For the off-line
stage, two constructions can avoid low efficiency of Cholesky
decomposition.

ACKNOWLEDGE

This work was supported by the National Natural Science
Foundation of China (61972032) and the Beijing Natural
Science Foundation (M23017).

REFERENCES

[1] P. Dutta, W. Susilo, D. H. Duong, and P. S. Roy, “Collusion-resistant
identity-based proxy re-encryption: Lattice-based constructions in stan-
dard model,” Theor. Comput. Sci., vol. 871, pp. 16–29, 2021.

[2] P. Dutta, M. Jiang, D. H. Duong, W. Susilo, K. Fukushima, and
S. Kiyomoto, “Hierarchical identity-based puncturable encryption from
lattices with application to forward security,” in Asia Conference on
Computer and Communications Security. ACM, 2022, pp. 408–422.

[3] E. Chen, Y. Zhu, G. Zhu, K. Liang, and R. Feng, “How to implement
secure cloud file sharing using optimized attribute-based access control
with small policy matrix and minimized cumulative errors,” Computers
& Security, vol. 107, p. 102318, 2021.

[4] W. Susilo, P. Dutta, D. H. Duong, and P. S. Roy, “Lattice-based hra-
secure attribute-based proxy re-encryption in standard model,” in 26th
European Symposium on Research in Computer Security, vol. 12973.
Springer, 2021, pp. 169–191.

[5] C. Gentry, A. Sahai, and B. Waters, “Homomorphic encryption
from learning with errors: Conceptually-simpler, asymptotically-faster,
attribute-based,” in 33rd Annual Cryptology Conference, vol. 8042.
Springer, 2013, pp. 75–92.

[6] D. Micciancio and C. Peikert, “Trapdoors for lattices: Simpler, tighter,
faster, smaller,” in Annual International Conference on the Theory and
Applications of Cryptographic Techniques. Springer, 2012, pp. 700–
718.

IEEE TRANSACTIONS ON INFORMATION FORENSICS & SECURITY, VOL. XX, NO. XX, MARCH 2024 14

[7] Y. Hu and H. Jia, “A new gaussian sampling for trapdoor lattices with
arbitrary modulus,” Des. Codes Cryptogr., vol. 87, no. 11, pp. 2553–
2570, 2019.

[8] C. Gentry, C. Peikert, and V. Vaikuntanathan, “Trapdoors for hard
lattices and new cryptographic constructions,” in Proceedings of the 40th
Annual ACM Symposium on Theory of Computing. ACM, 2008, pp.
197–206.

[9] N. Genise and D. Micciancio, “Faster gaussian sampling for trapdoor lat-
tices with arbitrary modulus,” in 37th Annual International Conference
on the Theory and Applications of Cryptographic Techniques. Springer,
2018, pp. 174–203.

[10] L. Ducas and A. Durmus, “Ring-lwe in polynomial rings,” in 15th
International Conference on Practice and Theory in Public Key Cryp-
tography, vol. 7293. Springer, 2012, pp. 34–51.

[11] P. Bert, P. Fouque, A. Roux-Langlois, and M. Sabt, “Practical imple-
mentation of ring-sis/lwe based signature and IBE,” in 9th International
Conference on Post-Quantum Cryptography, vol. 10786. Springer,
2018, pp. 271–291.

[12] K. D. Gür, Y. Polyakov, K. Rohloff, G. W. Ryan, H. Sajjadpour, and
E. Savas, “Practical applications of improved gaussian sampling for
trapdoor lattices,” IEEE Trans. Computers, vol. 68, no. 4, pp. 570–584,
2019.

[13] S. Zhao, R. Jiang, and B. K. Bhargava, “RL-ABE: A revocable lattice
attribute based encryption scheme based on R-LWE problem in cloud
storage,” IEEE Trans. Serv. Comput., vol. 15, no. 2, pp. 1026–1035,
2022.

[14] M. Ajtai, “Generating hard instances of the short basis problem,” in 26th
International Colloquium on Automata, Languages and Programming,
vol. 1644. Springer, 1999, pp. 1–9.

[15] J. Alwen and C. Peikert, “Generating shorter bases for hard random
lattices,” Theory Comput. Syst., vol. 48, no. 3, pp. 535–553, 2011.

[16] P. Bert, G. Eberhart, L. Prabel, A. Roux-Langlois, and M. Sabt, “Imple-
mentation of lattice trapdoors on modules and applications,” in 12th
International Workshop on Post-Quantum Cryptography, vol. 12841.
Springer, 2021, pp. 195–214.

[17] Y. Chen, N. Genise, and P. Mukherjee, “Approximate trapdoors for
lattices and smaller hash-and-sign signatures,” in 25th International Con-
ference on the Theory and Application of Cryptology and Information
Security, vol. 11923. Springer, 2019, pp. 3–32.

[18] H. Jia, Y. Hu, and C. Tang, “Lattice-based hash-and-sign signatures
using approximate trapdoor, revisited,” IET Inf. Secur., vol. 16, no. 1,
pp. 41–50, 2022.

[19] D. Micciancio and O. Regev, “Worst-case to average-case reductions
based on gaussian measures,” SIAM J. Comput., vol. 37, no. 1, pp. 267–
302, 2007.

[20] C. Peikert and A. Rosen, “Efficient collision-resistant hashing from
worst-case assumptions on cyclic lattices,” in Third Theory of Cryp-
tography Conference, vol. 3876. Springer, 2006, pp. 145–166.

[21] R. E. Bansarkhani and J. Buchmann, “Improvement and efficient im-
plementation of a lattice-based signature scheme,” in 20th International
Conference on Selected Areas in Cryptography, vol. 8282. Springer,
2013, pp. 48–67.

[22] C. Peikert, “An efficient and parallel gaussian sampler for lattices,” in
Annual Cryptology Conference, vol. 6223. Springer, 2010, pp. 80–97.

[23] Y. Yang, J. Sun, Z. Liu, and Y. Qiao, “Practical revocable and multi-
authority CP-ABE scheme from RLWE for cloud computing,” J. Inf.
Secur. Appl., vol. 65, p. 103108, 2022.

[24] A. Khalid, S. McCarthy, M. O’Neill, and W. Liu, “Lattice-based
cryptography for iot in A quantum world: Are we ready?” in IEEE 8th
International Workshop on Advances in Sensors and Interfaces. IEEE,
2019, pp. 194–199.

[25] A. Acar, H. Aksu, A. S. Uluagac, and M. Conti, “A survey on
homomorphic encryption schemes: Theory and implementation,” ACM
Computing Surveys, vol. 51, no. 4, pp. 1–35, 2018.

Hai Lu received the master’s degree from School
of Computer Science, Shaanxi Normal University,
Xi’an, Shaanxi, China in 2019. He is currently a
PhD candidate with the department of School of
Computer and Communication Engineering, Univer-
sity of Science and Technology Beijing, China. His
research interests include access control and lattice-
based cryptography. (Email: luhai@xs.ustb.edu.cn)

Yan Zhu received the M.S. and Ph.D. degrees in ap-
plied computer technology from Harbin Engineering
University, Harbin, China, in 2002 and 2005, respec-
tively. He is currently a Professor with the School
of Computer and Communication Engineering, Uni-
versity of Science and Technology Beijing, China.
From 2007 to 2013, he was an Associate Professor
of computer science with the Institute of Computer
Science and Technology, Peking University, Beijing.
From 2008 to 2009, he was a Visiting Scholar with
Arizona State University and with the University

of Michigan-Dearborn, in 2012. His research interests include cryptography,
secure computation, and network security. (Email:zhuyan@ustb.edu.cn)

Cecilia E Chen is currently a lecturer with the
Department of the School of Computer and Com-
munication Engineering, University of Science and
Technology Beijing, China. She received B.S. and
Ph.D. degrees from the Department of the School of
Mathematics and Physics and the School of Com-
puter and Communication Engineering, University
of Science and Technology Beijing, China, in 2013
and 2021, respectively. Her research interests include
blockchain, smart contracts, and lattice cryptogra-
phy. (Email: chene@ustb.edu.cn)

Di Ma is currently a Professor in the Computer and
Information Science (CIS) Department, College of
Engineering and Computer Science (CECS), at the
University of Michigan-Dearborn. She is also serv-
ing as the Associate Dean for Graduate Education
and Research and the director of the Cybersecu-
rity Center for Education, Research, and Outreach,
CECS. She is broadly interested in the general area
of security, privacy, and applied cryptography. Her
research spans a wide range of topics, including con-
nected and autonomous vehicle security, smartphone

and mobile device security, RFID and sensor security, data privacy, and so on.
Her research is supported by NSF, NHTSA, AFOSR, Intel, Ford, and Research
in Motion. She received the PhD degree from the University of California,
Irvine, in 2009. She was with IBM Almaden Research Center in 2008 and
the Institute for Infocomm Research, Singapore in 2000-2005. She was the
recipient of the Trevor O. Jones Outstanding Paper Award from Society of
Automobile Engineers (SAE) in 2019, the Distinguished Research Award
from the College of Engineering and Computer Science of UM-Dearborn
in 2017, and the Tan Kah Kee Young Inventor Award in 2004. (Email:
dmadma@umich.edu)

