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Privacy-Preserving Queries Using Multisource
Private Data Counting on Real Numbers in IoT

Guanglai Guo, Yan Zhu, Cecilia E Chen, Lejun Zhang, Rongquan Feng, Di Ma

Abstract—In this paper, our primary focus is on the current
lack of privacy-preserving queries tailored to real-number fields
rather than integers. We take multisource Private Data Counting
on Real numbers (R-PDC) within IoT architecture as a break-
through point to enable diverse query services without revealing
sensitive data. The advantage of this is that the parameters
required for queries remain stable and minimal in the scenario
of wide numerical domain and dynamic changed dataset. At
first, we present a general R-PDC method based on curve
approximation, in which an Approximate Query Function (AQF)
is established to approximate the constructed ideal counting
curve for element queries on target set. We also demonstrate
curve construction process of AQF and provide the feasibility
theorem of AQF for counting a target element within an allowable
error. By integrating the R-PDC method with fixed-point fully
homomorphic encryption, an efficient R-PDC scheme is presented
to perform multiparty collaborative queries in IoT. In security
aspect, the R-PDC scheme on (m, ϵ)-AQF is proved to be statisti-
cally secure against Chosen Element Attack (CEA) for cumulative
error ϵ and dataset size m. Moreover, the scheme achieves
O(nmγ) computation and O(n2mγ) communication complexities
for n servers and γ-length fraction. Finally, as an extension of
AQF over single attribute, multi-dimensional R-PDC method
is applied into privacy-preserving Naive Bayes Classifier and
Apriori algorithm over multiple attributes. Our work provides
substantial support and insights for the advancement of privacy
computation.

Index Terms—Privacy-preserving Query, Multisource Private
Data Counting, Curve Approximation, Approximate Query Func-
tion, Fixed-point Presentation, IoT.

I. INTRODUCTION

In an IoT network, multisource data queries/mining enable
different institutions to collaboratively analyze their shared
data from various IoT devices for valuable knowledge dis-
covery [1]. For example, multiple healthcare institutions share
medical records of patients monitored by wearable devices, so
as to make better medical diagnoses [2]. In smart grid, multiple
electricity sales departments share their power data, collected
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by edge servers, to provide optimal decision of balancing grid
loads [3]. Thus, it plays an important role to provide better
business decisions for institutions.

However, sharing sensitive data (e.g., personal interests and
hobbies, health data and location info.) has been inevitably
raising concerns on data privacy and legal compliance, such
as HIPAA and GDPR laws [4] [5] . Undoubtedly, privacy-
preserving data sharing and analysis are one of the key
technologies to ensure data security in IoT applications. As
their underlying technology, multisource Private Data Count-
ing (PDC) allows all participants to integrate shared data from
multiple sources to collaboratively perform counting without
leaking their private data [6]. In IoT, PDC lays the security
foundation on many applications, e.g., traffic flow statistics,
health monitoring and smart retail analytics [7] [8]. Thus, it
is essential and important to implement an efficient PDC for
secure IoT applications.

A. Motivation

There have existed some PDC methods that are applied into
privacy-preserving data sharing and analysis [9]. For example,
Yang et al. [10] presented a privacy-preserving frequency
mining protocol, which utilizes the additive homomorphism of
Elgamal encryption to implement secure frequency statistics.
Vo-Huu et al. [11] presented a frequency counting protocol
called EPiC based on indicator polynomials, in which the
counting problem is reduced to a summation of polynomial
evaluations and somewhat homomorphic encryption is used to
ensure data privacy.

As evident from existing literature, almost all known PDC
methods are implemented on integers. However, the data that
most practical applications need to handle are real numbers.
For example, IoT sensors usually deal with temperature and
humidity values in weather forecasting and disaster early
warning, as well as length, weight and volume measurements
in a safe and reliable service condition. Thus, there is an urgent
need to find a practical PDC method on real numbers for
various application needs.

A straightforward method for PDC on real numbers is to
transform real numbers into integers through field conversion.
It is commonly applied into fixed-point representation of real
numbers, thereby the PDC methods on real numbers can
be reduced to PDC on integers. Informally, the fixed-point
representation of a real number ã is written as ã = ā · 2−γ ,
where ā is its integer representation and γ is its fraction length.
Conversely, the integer representation of ã can be obtained by
amplifying it, i.e., ā = ã · 2γ . However, the multiplication on
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real numbers will cause Position Drift of Decimal Separator
(PDDS). For example, for given two inputs 3.25 = 13× 2−2

and 1.5 = 6 × 2−2 with γ = 2, the multiplication output is
3.25×1.5 = (000011.01)2×(000001.10)2 = (0100.1110)2 =
4.875, where (·)2 denotes binary representation. This means
that the fraction length of the multiplication result is changed
as γ = 4. So, the position of decimal point is left shifted by 2
bits in comparison with two inputs. In computer system, two
least significant bits (γ = 2) of the multiplication result might
be truncated to keep the decimal point position unchanged, i.e.,
3.25× 1.5 = (0100.1110)2 ≈ (0100.11)2 = 19× 2−2 = 4.75,
and the output’s error is 0.125. Obviously, algebraic operation
on real numbers can be implemented on integers through field
conversion, but this will introduce the fixed-point representa-
tion errors of real numbers due to PDDS.

Basic algebraic operations, such as addition, multiplication
and exponentiation, commonly need to be performed in a given
PDC computing task. To do it, Homomorphic Encryption (HE)
is currently the most common form to perform these algebraic
operations on encrypted data, which is collectively referred to
as Ciphertext-State Computation (CSC). In other words, CSC
is a process of performing computations or operations directly
on data in a ciphertext form. At present, the CSC researches
mainly focus on algebraic operations on integers, but CSC on
real numbers is relatively few and mainly focuses on Secure
Multiparty Fixed-point Computation (SMFC) protocols. A
typical SMFC scheme, presented by Catrina et al. [12], can
implement addition and multiplication HE on real numbers
and solve the PDDS problem. To our best knowledge, it is
currently one of the most complete frameworks of SMFC in
CSC on real numbers.
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Fig. 1. Three curves for counting the same element on different data sets.

The implementation method of PDC on integers is generally
based on polynomial interpolation. Formally, for given data set
S = {s1, s2, · · · , sm} and target element w ∈ S, the idea of
this method is to construct an interpolating polynomial f(x)
on domain S such that f(x) = 1, when x = w; and f(x) = 0,
otherwise, then scan through all elements in S to compute
the sum

∑m
i=1 f(si). The result is the number of element

w in S. Based on this method, Fig.1 shows the curves of

interpolating polynomials f1(x) and f2(x) for counting the
target element w = s2 on data sets S1 = {s1, s2, s2, s3} and
S2 = {s1, s2, s2, s3, s4, s4, s5}, respectively. It is easy to see
that the curve shapes of f1(x) and f2(x) will be different if
the elements in domains S1 and S2 are different.

In this method, adding or removing an element to/from
the data set will significantly change the curve shape of the
interpolation polynomial, thereby requiring the reconstruction
of it. That is, this method has poor stability and is not
suitable for the data set with dynamic changes. For example,
the temperature data set exhibits significant variations corre-
sponding to different seasons. In this setting, the temperature
difference in a certain area ranges from −20 ◦C to 40 ◦C
among four seasons. When the measurement accuracy is 0.1,
a data set containing 601 elements will be generated. Thus,
an interpolating polynomial of degree 601 is required to be
constructed for counting on the data set. As a result, this
construction form of polynomial curve suffers from excessive
storage overheads and increases the complexity of application
development. It means that this method is only applicable to
a fixed discrete set of integers. As shown in Fig.1 (see the
purple curve f(x)), there will be a simpler solution for the
above example by using PDC on real numbers, described in
the next section.

B. Our Approaches

In views of limitations of PDC on integers, we intend to
present a practical PDC method on real numbers based on
curve approximation (called R-PDC). This method can im-
plement efficient counting on real numbers with an allowable
error, while ensuring the privacy of multisource data. Exactly,
we employ the following techniques to implement it.

• In curve construction aspect, an approximation algorithm
is used to construct the curve of Approximate Query
Function (AQF) for counting target elements. This kind
of curve construction has a unified form to support
queries for variable continuous data sets (e.g., the purple
curve f(x) in Fig.1 supports queries on both S1 and
S2, simultaneously). Moreover, the parameter of AQF is
adjusted to control the cumulative counting error within
an allowable range for the correctness of counting results.

• In ciphertext-state computation of AQF aspect, polyno-
mial fitting method is used to convert AQF into a polyno-
mial with real coefficients for homomorphic computations
of addition and multiplication on real numbers. By using
SMFC, the coefficients of polynomial and elements of
data set are distributed into all participants in the form of
fixed-point representation, so as to ensure the privacy of
multisource data in collaborative query process.

The curve f(x) of our R-PDC method in Fig.1 is a long
tail curve such that f(x) ≈ 1, when x = w; and f(x) ≈ 0,
otherwise. Using this curve for queries will incur counting
errors. As shown in Fig.1, the curve f(x) is symmetric about
the line x = s2 and decreases monotonically on intervals
(s2,+∞) and (−∞, s2), resulting in a monotonically decreas-
ing counting error. This feature of curves ensures that the
cumulative counting error is controllable on all elements of the
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data set. As a result, the curve f(x) is applicable to efficient
queries on large-scale data sets with dynamic change.

The SMFC framework presented by Catrina et al. [12] is
adopted to implement homomorphic computations of addition
and multiplication on real numbers. Especially, the TruncPr
algorithm in the framework effectively solves the problem
of fixed-point representation errors on real numbers. Based
on SMFC, a Fixed-point Fully Homomorphic Encryption (F-
FHE) scheme is constructed to implement multiparty CSC
with fixed-point representation1. Therefore, the proposed R-
PDC method can support queries not only on integers but also
on real numbers, thereby meeting the business needs of most
applications.

C. Our Contributions

In this paper, we address the implementation of privacy-
preserving queries based on a practical and efficient R-PDC
method in real-number field. To do it, we provide a method of
fixed-point representation on real numbers and design a system
model over IoT to implement privacy-preserving query process
among three entities, i.e., owners, inquirer and multiservers,
by four algorithms (Encap, Query, Answer and Reduct). On
this basis, an efficient R-PDC scheme over F-FHE is presented
to protect multisource data privacy in collaborative queries of
multiservers. Our main contributions are as follows:

• We present a general R-PDC method based on curve
approximation. In this method, an ideal counting curve is
constructed from queried target set, and then an AQF is
generated to approximate this curve for element counting.
Especially, we demonstrate curve construction process
of AQF and provide the feasibility theorem of AQF
for counting a target element within an allowable error.
Moreover, the constructed AQF can be converted into a
fitted polynomial of variable degree to implement CSC
with fixed-point representation. As an extension of AQF
over single attribute, n-dimensional R-PDC method is
applied into privacy-preserving Naive Bayes Classifier
and Apriori algorithm over multiple attributes.

• We provide a type of curve, expressed as f(x) = ((x −
w)2 + 1)−a, to establish (m, ϵ)-AQF. This construction
can count target w for any data set S with m elements
provided that a > 3.3(logm−log ϵ), where ϵ ∈ (0, 0.5] is
the upper bound of allowable cumulative counting error.
In security aspect, the R-PDC scheme on (m, ϵ)-AQF
is proved to be statistically secure against Chosen Ele-
ment Attack (CEA) for both data privacy and query pri-
vacy. Moreover, the presented scheme achieves O(nmγ)
computation and O(n2mγ) communication complexities,
where n is the number of servers in multiservers and γ
is the fraction length of real numbers.

In the remainder of this paper, we introduce the current state
of the art in Section II and basic preliminaries in Section III,
followed by the definitions of private data counting and system
model in Section IV. We present a general R-PDC method
based on curve approximation in Section V and construct the

1The F-FHE construction is described in the supplementary material

R-PDC scheme over F-FHE in Section VI. The full security
proofs and performance evaluations of our scheme are given,
respectively, in Section VII and Section VIII. In Section IX,
we show two applications of the multi-dimensional R-PDC
method. Finally, we conclude this paper in Section X.

II. CURRENT STATE OF THE ART

In this section, we will introduce the current state of the art
on secure computation with fixed-point numbers and the PDC
methods, respectively.

A. Secure Computation on Real Numbers

In the past decade, many research works focused on secure
computation with fixed-point representation since some appli-
cations required computing over real numbers. Catrina and
Saxena [13] presented the first secure computation framework
with real numbers using fixed-point representation, which
provides some protocols for secure fixed-point arithmetic and
comparison based on secret sharing. Subsequently, Catrina
[14] presented some improved building blocks and protocols
for secure fixed-point arithmetic based on the framework in
literature [13]. After that, Liedel [15] presented a secure square
root protocol to extend the fixed-point arithmetic primitive for
secure computation in the framework of Catrina and Saxena.
Recently, Ugwuoke et al. [16] presented an efficient two-party
fixed-point division protocol to compute fixed-point quotient
of two encrypted inputs with a linear computational complex-
ity. Boyle et al. [17] presented the first function secret sharing
gates for arithmetic and logical shift based on pseudorandom
generator, which enables secure computation of fixed-point
arithmetic, including multiplication and comparison.

In some literature, the framework of Catrina and Saxena
[13] has been applied into privacy-preserving multisource
data mining protocols. At first, Catrina and De Hoogh [12]
presented secure multiparty linear programming protocols with
fixed-point arithmetic to achieve privacy-preserving collabora-
tive optimization problems, as well as applications in secure
supply chain management [18]. After that, De Cock et al.
[19] presented a secure protocol for performing linear regres-
sion over distributed datasets based on pre-distributed data.
Moreover, the presented protocol is proved to be information-
theoretically secure in the commodity-based model. Similarly,
Gascón et al. [20] presented privacy-preserving distributed
linear regression protocols over vertically-partitioned datasets,
which provided security against semi-honest adversaries.

Other secure computation frameworks with fixed-point
numbers have been presented in recent years. Mohassel and
Zhang [21] presented SecureML, a secure two-party computa-
tion framework using secret sharing in the two-server model,
aiming to provide efficient protocols for private preserving ma-
chine learning such as linear regression. SecureML supported
build-in fixed-point multiplication with precomputed Beaver
multiplication triples. Mohassel and Rindal [22] presented
a complete three-party computation framework (ABY3) for
training linear regression in three-server model. Moreover,
ABY3 used replicated secret sharing technique of Araki et al.
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[23] to achieve fixed-point multiplication. Li and Xu [4] pre-
sented PrivPy, an efficient framework for privacy-preserving
collaborative data mining in the four-server model. the PrivPy
computation engine combined the thought of SecureML and
ABY3 and provided more efficient protocols for fixed-point
multiplication using 2-out-of-4 secret sharing.

Some scholars extended homomorphic encryption schemes
by encoding methods to enable secure computations with real
numbers. Fouque et al. [24] improved the Paillier cryptosystem
to achieve its homomorphic properties on bounded rationals
by encoding it as a fraction of two integers and decoding it
from two-dimensional lattices. Jiang et al. [25] used the scaled
numeric formats to tranform real number into integer and then
encoded them into polynomial, so that homomorphic opera-
tions with encoded fixed-point real number can be performed
in multi-bit fully homomorphic encryption. Dowlin et al.
[26] introduced a binary fractional encoder for fixed-precision
rational numbers, in which the digits after the decimal point
was encoded as the high-degree coefficients of the polynomial.

B. Private Data Counting

Some secure protocols using encryption are designed for
private data counting in data mining. Yang et al. [10] presented
the privacy-preserving frequency mining protocols that allow
a data miner to privately compute frequencies of values in
the customers’ data. Their protocol design was based on the
additive homomorphism of a variant of ElGamal encryption
[27]. Roughan and Zhang [28] used the secure sum protocol
[29] to achieve secure distributed internet traffic measurement
such as calculating the number of traffic flows across a set
of networks. Vo-Huu et al. [11] presented EPiC, a practical
frequency counting protocol based on indicator polynomials.
EPiC transformed the problem of privacy-preserving pattern
counting into a summation of polynomial evaluations and used
somewhat homomorphic encryption [30] to address secure
counting in a highly efficient manner.

Other solutions based on secret sharing paradigm have been
also applied into private data counting. Emekci et al. [31]
presented a privacy-preserving summation protocol based on
addictive secret sharing [32], and it is applied into privacy-
preserving decision tree algorithm for counting instances with
specific attribute values. Bohli et al. [33] presented equal+, an
equality comparison protocol based on joint random number
sharing [34] in assisting server model. Based on equal+, they
also presented a link-counting application protocol to sum up
the number of matched records with specific conditions in
cooperative network monitoring. Dolev et al. [35] presented
an oblivious count query protocol for MapReduce based on
Shamir’s secret sharing scheme. The protocol was actually an
extension of string-matching algorithm [36] that was executed
using accumulating automata.

III. PRELIMINARY

In this section, we recall some preliminaries. At first, some
notations are defined as follows. Let P = {P1, · · · , Pn} be
the set of n participants. The vector and matrix are denoted as
bold lower-case and capital letters, e.g., x and X, respectively.

Cx = (x1, · · · , xn) is denoted as the ciphertext vector with n
sub-ciphers xk for the corresponding plaintext x, where k ∈
[1, n]. [Cx] is denoted as the aggregation of shared sub-ciphers
from n participants. In addition, the other notations used in
this paper are listed in Table I.

TABLE I
THE DEFINITION OF MAIN NOTATIONS.

Notations Description
Fp the finite field of order p
Zp the integer field of order p
U the finite set of integers
P the finite set of real numbers
γ the fraction part length of fixed-point number
e the integer part length of fixed-point number
S the data set {s1, s2, · · · , sm}
W the target set {w1, w2, · · · , wτ}
D the encrypted data of S
Φ the query parameter
α the query response
β the counting result

A. Linear Secret Sharing

Linear Secret Sharing Schemes (LSSS) are a useful tool
in construction of cryptographic security protocols. Generally,
the LSSS scheme involves a dealer who owns a secret r, and
a set of n participants holding the shares of r. For the (t, n)-
threshold case [32], the dealer divides the secret r into n shares
and distributes them among n participants, with the properties
that any t or more shares can easily reveal r, but any t− 1 or
less shares cannot reveal any information on r. Formally, the
LSSS scheme is defined as follows.

Definition 1 (Linear Secret Sharing Schemes, LSSS): Let
Fp be the finite filed of prime order p. Let x1, x2, · · · , xn be
n distinct nonzero elements in Fp. The linear secret sharing
scheme includes the following two phases:

• Secret-sharing phase: the dealer, who owns a secret r ∈
Fp, randomly selects a polynomial f(x) = r+

∑t−1
i=1 aix

i,
where t − 1 elements a1, a2, · · · , at−1 ∈ Fp. The i-th
share ri of the secret r is ri = f(xi) ∈ Fp for i ∈ [1, n].
Then, the share ri is sent to participant Pi, privately.

• Secret-reconstruct phase: k participants P1, P2, · · · , Pk

can recover the secret r from their shares r1, r2, · · · , rk
by Lagrange interpolation, i.e., r =

∑k
i=1 L(i) ·ri, where

k ≥ t and L(i) =
∏

j∈[1,k],j ̸=i
xj

xj−xi
∈ Fp is the

Lagrange coefficient.

B. Homomorphic Encryption

Homomorphic Encryption (HE) is a key technique of cryp-
tography that allows to perform either addition or multiplica-
tion operation on ciphertext without decryption. Generally, the
HE scheme has four algorithms, including KGen, Enc, Dec
and Eval, where Eval is an additional algorithm that realizes
homomorphic evaluations on ciphertexts. Next, the definition
of HE is described as follows.

Definition 2 (Homomorphic Encryption, HE): A homomor-
phic public key encryption scheme consists of four algorithms
(KGen,Enc,Dec,Eval) such that
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TABLE II
THE MAPPING RELATIONSHIP OF ELEMENTS AMONG THREE DOMAINS.

Domain (l = 4, γ = 2, p = 17) Data Range

P = {−7× 2−2 ≤ x̄ ≤ 7× 2−2} − 7
4
− 3

2
− 5

4
−1 − 3

4
− 1

2
− 1

4
0 1

4
1
2

3
4

1 5
4

3
2

7
4

U = {−7 ≤ x̄ ≤ 7} -7 -6 -5 -4 -3 -2 -1 0 1 2 3 4 5 6 7
Zp = {−7 ≤ x̄ ≤ 9} -7 -6 -5 -4 -3 -2 -1 0 1 2 3 4 5 6 7 8 9

• KGen(1κ) → (pk, sk), takes as input the security
parameter κ, and it outputs a public key pk and a private
key sk.

• Enc(pk, x)→ Cx, takes as inputs the public key pk and
a message x, and it outputs a ciphertext Cx.

• Dec(sk, Cx)→ x, takes as inputs the private key sk and
a ciphertext Cx, and it outputs the message x.

• Eval(Cx, opt, Cy)→ Cz , takes as inputs the addition or
multiplication operation opt ∈ {+, ∗}, and two cipher-
texts, Cx and Cy , and it outputs a new ciphertext Cz .

According to [37], the HE scheme in Definition 2 is said
to be fully homomorphic if Eval enables both homomorphic
addition and multiplication operations. The definition of fully
homomorphic encryption is given as follows.

Definition 3 (Fully Homomorphic Encryption, FHE): A
HE scheme (KGen,Enc,Dec,Eval) is said to be fully
homomorphic, if it is homomorphic for both addition and
multiplication operations opt, where opt ∈ {+, ∗}.

IV. DEFINITION AND SYSTEM MODEL

A. Fixed-point Representation

Fixed-point numbers are real numbers with fixed position
of decimal point, and divide real numbers into an integer part
and a fractional part with fixed length. For a l-bit fixed-point
number, e is denoted as the length of integer part (including
the sign bit), γ is denoted as the length of fractional part, and
l = e+γ. Formally, the fixed-point representation of a number
is defined as follows.

Definition 4 (Fixed-point Representation): Given a set of
l-bit integers U = {x ∈ Z| − 2l−1 + 1 ≤ x ≤ 2l−1 − 1}, a
l-bit fixed-point representation is the subset P of real numbers,
defined as P = {x̃ = x̄ · 2−γ |x̄ ∈ U}. Accordingly, the range
of P is the set {−2e−1 + 2−γ ≤ x̃ ≤ 2e−1 − 2−γ}, where γ
is the length of the fractional part, and e = l− γ is the length
of the integer part.

Example 1: Let l = 8 and γ = 2. From Definition 4, the
fixed-point representation of 3.25, 1.5 and 5 are listed as:

1) 3.25 : x̃ = 3.25 = (000011.01)2 = (00001101)2 ×
2−2 = 13× 2−2, where x̃ = 13.

2) 1.5 : x̃ = 1.5 = (000001.10)2 = (00000110)2 × 2−2 =
6× 2−2, where x̃ = 6.

3) 5 : x̃ = 5 = (000101.00)2 = (00010100)2 × 2−2 =
20× 2−2, where x̃ = 20.

In the above definition of fixed-point representation, a fixed-
point number x̃ ∈ P can be encoded in an integer x̄ ∈ U. For
this reason, we define the mapping

intγ : P→ U, intγ(x̃) = x̃ · 2γ , (1)

to map a fixed-point number x̃ in P to an integer x̄ in U.
In addition, all secure computations are limited to the integer

field Zp. So, we use the function

fldp : U→ Zp, f ldp(x̄) = x̄ mod p, (2)

to encode an integer x̄ in U as a single field element x in Zp

by x = x̄ mod p, where p > 2l.
Actually, in order to achieve secure multiparty computation

with fixed-point numbers, the fixed-point representation estab-
lishes the mapping among three domains, i.e., P→ U→ Zp.
Exactly, a fixed-point number x̃ ∈ P is firstly mapped to an
integer x̄ = x̃ · 2γ ∈ U, and then encoded into a field element
x = x̄ mod p ∈ Zp.

Example 2: Let l = 4 and γ = 2. According to Definition
4, the range of 4-bit integer set is U = {−7 ≤ x̄ ≤ 7},
and the range of 4-bit fixed-point representation set is P =
{−7 × 2−2 ≤ x̄ ≤ 7 × 2−2}. Assume that p = 17 > 24.
the range of integer filed is Zp = {−7 ≤ x̄ ≤ 9}. For clarity,
Table II lists the mapping relationship of elements among these
three domains.

From Table II, it can be seen that the mapping P → U is
one-to-one mapping. Similarly, the mapping U → Zp is one-
to-one mapping. Moreover, under the condition of p > 2l,
there exist some additional elements (e.g., 8, 9) in Zp that
can not be represented by fixed-point representation, but this
will not affect the fixed-point computation. So, the fixed-point
numbers can be effectively encoded as field elements.

Sign Integer part Fractional part

k

e

l

g

Fig. 2. The length relation between fixed-point numbers and storage space.

In practical algebraic operations, there exists data overflow
in multiplication of fixed-point numbers. In order to ensure the
accuracy of computation with fixed-point numbers, fixed-point
representation needs to sacrifice half of the storage space. For
clarity, Fig.2 shows the relationship between the length l of
fixed-point numbers and the size k of storage space. Exactly,
the length l of fixed-point numbers should be limited to not
more than half of size k of storage space, i.e., l ≤ k/2.

B. Private Counting Problem

We firstly define Data Counting (DC) problem. Informally,
counting is an action of determining the total number of data
objects. Formally, the definition of DC is as follows.
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Definition 5 (Data Counting, DC): Given the data set
S = {s1, s2, · · · , sm}, where all si ∈ Z for i ∈ [1,m], data
counting is an approach for obtaining the number of one or
more certain elements in S.

For clarity, the set W of τ elements to be counted, denoted
by W = {w1, w2, · · · , wτ}, is called as the target set, where
all wi ∈ Z for i ∈ [1, τ ]. Formally, given S and W , we use the
function Count : Zm × Zτ → Z to define the DC problem
as Count(S,W ) = |{∀si, si ∈ W, i ∈ [1,m]}|, where | · |
denotes the length of any input set.

In cryptography, Private Data Counting (PDC) is a protocol
that allows a user for data counting from a server in possession
of a data set, without revealing the information of stored data
and counting result. Without loss of generality, the definition
of PDC is given as follows.

Definition 6 (Private Data Counting): Given the DC prob-
lem Count(S,W ), a DC scheme is called private data count-
ing between an inquirer and a server if the following properties
hold:

• Correctness: the counting result obtained by the inquirer
is consistent with that of Count(S,W );

• Query Privacy: the query information W is kept secret
for the server, and no information except for the counting
result is available for the inquirer;

• Data Privacy: there does not exist the stored data for
revealing to the server in the counting process.

C. Multiparty Fixed-point Fully Homomorphic Encryption

We intend to reduce PDC on real numbers (called R-PDC)
into addition and multiplication operations with fixed-point
numbers. So, we introduce the definition of multiparty Fixed-
point Fully Homomorphic Encryption (F-FHE), as follows.

Definition 7 (F-FHE): A multiparty fixed-point fully ho-
momorphic encryption scheme consists of four algorithms
(ParamGen, Encpp, Decpp, Evalpp) such that

• ParamGen(1κ, n) → pp, takes as inputs the security
parameter κ and the number n of participants, and outputs
the public parameter pp.

• Encpp(x̃) → Cx̃, takes as inputs the public parameter
pp and a plaintext x̃ ∈ P, and outputs a ciphertext vector
Cx̃ ∈ Zn

p , where Cx̃ = (cx,1, · · · , cx,n) and cx,k is the
sub-cipher for the k-th participant for x̃.

• Decpp([Cx̃])→ x̃, takes as inputs the public parameter
pp and a ciphertext [Cx̃] ∈ Zn

p , and outputs a plaintext
x̃ ∈ P, where [Cx̃] represents the aggregation of shared
sub-ciphers from the n participants.

• Evalpp(Cx̃, opt,Cỹ) → Cz̃ , takes as inputs the public
parameter pp, the operation opt ∈ {+, ∗}, and two
ciphertexts vectors, Cx̃ and Cỹ , and outputs a new
ciphertext vector Cz̃ .

In the definition of F-FHE, threshold cryptosystem is intro-
duced into the multiparty setting, thus the threshold is used
to replace the key in traditional cryptosystem. According to
the FHE scheme on integers [37] and the secure computation
method with fixed-point numbers [12], a candidate F-FHE
cryptosystem is given in the supplementary material and
applied into the implementation of our R-PDC scheme.

D. System Model over IoT Architecture

IoT architecture, including perception, network and applica-
tion layers, can be applied to implement R-PDC. In Fig.3, var-
ious sensors upload their collected data into multiple servers
at network layer. And then, multiple servers adopt the above
mentioned F-FHE cryptosystem to ensure the security of data
counting process. Finally, they can provide query services for
inquirers in application layer. Especially, our model consists
of the following three entities.

• Owners (O): refers to multiple distinct data entities, e.g.,
sensors, wearable devices, or IoT devices;

• Inquirer (Q): is an individual who requests count queries
of designated elements from multiservers, receives query
responses from multiservers, and recovers the final count-
ing results;

• MultiServers (MS): represents the n servers P =
{P1, P2, · · · , Pn}, that jointly perform secure multiparty
computation on encrypted data from multiple sources,
faithfully execute the query requests and send the query
responses to the inquirer.

Fig. 3. The R-PDC model over IoT Architecture.

Note that, in application, each of multiservers may be the
agent of data entities that distributes their own data to other
servers, thereby forming a union data set S = {Si|1 ≤ i ≤ d},
where Si is a set of data from the i-th data entity.

In the above model, the R-PDC is decomposed into four
steps. As shown in Fig.3, each of these steps is represented as
an algorithm. Accordingly, the R-PDC scheme over F-FHE,
that consists of four algorithms, is defined as follows.

Definition 8 (R-PDC): Given the public parameter pp under
security parameter κ, a data set S and a target set W , a
PDC scheme based on F-FHE consists of four algorithms
(Encap,Query,Answer,Reduct) such that

• Encap(S), denotes an encryption algorithm invoked by
the owners O that takes the data set S as input, and
outputs the encrypted data set D. Then, D will be stored
on the multservers MS, i.e., Encap(S) = D;

• Query(W ), denotes a query algorithm executed by the
inquirer Q that takes the target set W as input, and
outputs a query parameter Φ, i.e., Query(W ) = Φ;
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• Answer(D,Φ), denotes a R-PDC protocol run by the
multiservers MS that take the data set D and the query
parameter Φ as inputs, and outputs the query response
α, i.e., Answer(D,Φ) = α;

• Reduct(α), denotes a reduction algorithm executed by
the inquirer Q that takes the query response α as input,
and outputs counting result β, i.e., Reduct(α) = β.

V. THE R-PDC METHOD

In this section, we present a general R-PDC method based
on curve approximation, which can implement data counting
on real numbers with an allowable error. In particular, an ap-
proximate query function is formally defined and constructed
to improve the efficiency of data queries.

A. Private Counting Method

We here present a new R-PDC method, the core of which
is to construct an ideal counting curve (also called query
function) applied into Query algorithm. Formally, for a given
target set W , an ideal counting curve g(x) is constructed with
the properties that g(x) = 1 for any x ∈W and g(x) = 0 for
any x /∈ W . That is, the elements in S are divided into two
categories by W : one is the element that belongs to W where
the corresponding value of g(x) is set to 1; the other does not
belong to W where the value of g(x) is set to 0. So that the
correct counting result is Count(S,W ) =

∑m
i=1 g(si).

In order to improve efficiency of query, a scaleable algebraic
curve f(x), called as approximate query function, is generated
to approximate the above g(x). This means that there exists
an error function e(x) defined as e(x) = f(x) − g(x), but
this error must be controlled within the allowable range.
This process is called curve approximation. Formally, the
definition of f(x) is given as follows.

Definition 9 (Approximate Query Function, AQF): Let f :
S → R be a real-valued function whose domain is a finite set
S. Then, given a target set W ⊆ S and a positive real number
ϵ, f is said to be ϵ-AQF if for any x ∈ W , the following
property holds:

f(x) =

{
1 + e(x) x ∈W,

0 + e(x) x /∈W,
(3)

where e(x) is a allowable error with |e(x)| < ϵ.
According to Definition 9, the constructed f(x) should meet

the following properties: for the specific element x′ in S,
the corresponding value f(x′) of the function is equal or
approximately equal to the value g(x′), i.e., g(x′) ≈ f(x′). In
other words, there exists some specific two-dimensional points
{(x′, g(x′))} in coordinates, such that the points {(x′, f(x′))}
on the curve f(x) coincides or approximately coincides with
these points {(x′, g(x′))}. Moreover, for the element that
belongs to W , the value of f(x) is approximately set to 1;
otherwise, the value of f(x) is approximately set to 0.

Finally, we discuss how to use polynomial fitting method
to convert the f(x) into a polynomial p(x) of degree λ for
performing secure data counting on real numbers with fixed-
point representation. To do it, for two given domain S and W ,

a general and efficient R-PDC method is presented by using
curve approximation, and the counting procedure is described
in Fig.4.

1) Curve Generation: construct an ideal counting curve
g(x) by the target set W , and generate an AQF f(x) to
approximate g(x) by using curve approximation.

2) Single Counting: calculate f(si) for any i ∈ [1,m] to
check whether si in S belongs to W . Specifically, if
si ∈W , then the value of f(si) is approximately set to
1, i.e., f(si) ≈ 1; otherwise, f(si) ≈ 0.

3) Cumulative Counting: accumulate f(si) for all i ∈
[1,m] to get the sum

∑m
i=1 f(si).

4) Result Recovery: obtain the counting result by round-
ing the above sum

∑m
i=1 f(si), i.e., Count(S,W ) =⌊∑m

i=1 f(si)
⌉
, where the cumulative counting error sat-

isfies |
∑m

i=1 e(si)| = |
∑m

i=1(f(si)− g(si))| < ϵ.

Fig. 4. The R-PDC method based on curve approximation.

In Fig.4, the cumulative counting error
∑m

i=1 e(si) refers to
the sum of the counting errors generated by using AQF f(x)
to count all m elements si in S. To ensure the correctness of
Count(S,W ) on S and W , it is required that the cumulative
counting error satisfies |

∑m
i=1 e(si)| < ϵ, where 0 < ϵ ≤ 0.5.

According to the above settings, we have Count(S,W ) =
⌊
∑m

i=1 f(si)⌉ =
∑m

i=1 g(si) + ⌊
∑m

i=1 e(si)⌉ =
∑m

i=1 g(si).
This means that the f(x) can replace g(x) to achieve efficient
counting within an allowable counting error. Moreover, the
subsequent Theorem 1 is presented to illustrate that the errors
can be limited into an allowable range to ensure the correctness
of counting results.

B. Construction of AQF

We now consider the construction of AQF f(x) for counting
a target element w. For this case, the constructed f(x) neither
depends on the elements in data set S, nor knows whether the
target element w is in S.

Given the data set S = {s1, s2, · · · , sm}, where si ∈ Z for
all i ∈ [1,m]. Next, we consider the PDC problem over S with
the target element w = 0. In Fig.5, the red solid line represents
an ideal counting curve g(x) that satisfies this counting case.
Exactly, the curve g(x) should meet the properties that g(x) =
1 when x = 0, and g(x) = 0, otherwise.

According to the properties of g(x), multiple curves may
be constructed to approximate this ideal counting curve. As
shown in Fig.5, the blue dotted line represents a candidate
AQF f(x). The curve f(x) meets the following properties:

1) The value of f(x) is as close to 1 as possible when x = 0,
i.e., f(x) ≈ 1 or f(x) = 1 when x = 0;

2) The value of f(x) approaches 0 or equals 0 when x ̸= 0,
i.e., f(x) ≈ 0 or f(x) = 0 when x ̸= 0;

3) The f(x) is an even function since g(x) is even.
According to the above properties, the constructing idea of

f(x) based on curve approximation is given as follows: at first,
the function f(x) = x−a is chosen as the curve approximation
of g(x), where a ≥ 1 and a is an integer. Besides, the larger
the value of a is, the better the approximation effect of f(x)
is. Then, the function f(x) = (x2)−a is established by curve
symmetry in property 3). Finally, the function f(x) = (x2 +
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Fig. 5. An example of curve for counting a target element.

1)−a is established in terms of the properties 1) and 2). Thus,
the final AQF f(x) is expressed as

f(x) = (x2 + 1)−a. (4)

The above curve f(x) can be used to count the element
w = 0 in any data set S. According to our R-PDC method (see
Fig.4), the counting result is Count(S,w) = ⌊

∑m
i=1 f(si)⌉,

where i ∈ [1,m]. Note that, the rounding method is used to
ensure the correctness of counting results since the R-PDC
method using curve approximation has counting errors.

Moreover, the curve f(x) is able to count any element w
by translating along the x-axis. That is, for any data set S and
target element w, the AQF f(x) can be uniformly defined as

f(x) = ((x− w)2 + 1)−a, (5)

where a ≥ 1 and a is an integer. Thus, this kind of curve
construction can meet query requirements for different target
elements by curve translation.

In order to ensure that the constructed f(x) can count any
element w in S, the Theorem 1 is given as follows.

Theorem 1: Given the data set S = {s1, s2, · · · , sm} and
the target element w, the function f(x) = ((x−w)2+1)−a is a
(m, ϵ)−AQF to count w, provided that m·2−a < ϵ, where a is
a variable integer and a ≥ 1, m is the number of elements in S,
ϵ is the upper bound of allowable error satisfying ϵ ∈ (0, 0.5].

Proof 1: For the given data set S = {s1, s2, · · · , sm} and
target element w, the counting error on the element si ∈ Z is

e(si) = f(si)− g(si)

=

{
0 si = w,

((si − w)2 + 1)−a si ̸= w,

(6)

where i ∈ [1,m].
According to Equation (6), when si = w, the counting error

of f(x) at x = w is 0, i.e., e(si) = 0, and the error function
e(x) is expressed as e(x) = ((x− w)2 + 1)−a when si ̸= w.
Obviously, the function e(x) is symmetric about the line x =
w, and it decreases monotonically when x > w. Thus, e(x)
gets the maximum value at x = w + 1 for all x ∈ Z, so that

the equation 0 < e(si) ≤ e(w+1) = 2−a holds for all si ∈ Z
(si ̸= w). Further, the cumulative counting error, denoted as∑m

i=1 e(si), for all si (i ∈ [1,m]) satisfies
m∑
i=1

e(si) ≤ m · e(w + 1) =
m

2a
(7)

Assume that ϵ is the upper bound of allowable error. To
ensure the correctness of data counting, it is required that the
equation 0 ≤

∑m
i=1 e(si) ≤ m · 2−a < ϵ holds, where 0 <

ϵ ≤ 0.5. So that a > logm−log ϵ
log 2 ≈ 3.3(logm − log ϵ) holds,

and a is proportional to logm. When m is fixed, the smaller
the value of ϵ is, the larger the value of a is, and the smaller
the cumulative counting error

∑m
i=1 e(si) is. According to our

R-PDC method, the counting result of w is

Count(S,w) =

⌊
m∑
i=1

f(si)

⌉
=

⌊
m∑
i=1

(g(si) + e(si))

⌉

=

m∑
i=1

g(si) +

⌊
m∑
i=1

e(si)

⌉
.

(8)

According to Equation (8), if the equation 0 ≤
∑m

i=1 e(si) < ϵ
holds and 0 < ϵ ≤ 0.5, then we have ⌊

∑m
i=1 e(si)⌉ = 0. So

that Count(S,w) =
∑m

i=1 g(si). That is, the f(x) can replace
g(x) to achieve data counting by using our R-PDC method.
Thus, we complete the proof of Theorem 1.

Example 3: Let S = {−4, 0, 3, 4, 3, 2, 2,−3, 1, 1,−2, 0, 2, 4
− 1,−1,−4,−1, 0,−3}, w = 0 and ϵ = 0.5. According to
Theorem 1, when the number m of element in S is 20, i.e.,
m = 20, the parameter a satisfies

a >
logm− log ϵ

log 2
≈ 5.3219. (9)

Here, we choose a = 6. Then, the function f(x) = (x2 +
1)−6 is a candidate AQF that is used for counting w = 0.
Exactly, for given S, the counting result of w is Count(S, 0) =⌊∑20

i=1 f(si)
⌉
= ⌊3.0784⌉ = 3, and the cumulative counting

error is
∑20

i=1 e(si) =
∑20

i=1(f(si) − g(si)) = 0.0784 < 0.5.
Thus, the counting result of Count(S, 0) is consistent with
the number of element w = 0 in S.

Moreover, considering the presented R-PDC method only
involves addition and multiplication operations, polynomial fit-
ting method is adopted to convert f(x) into a polynomial p(x)
of degree λ, i.e., p(x) =

∑λ
k=0 η̃kx

k, thereby implementing
private data counting with fixed-point representation.

Example 4: From Example 3, the function f(x) = (x2 +
1)−6 can be approximated by a candidate polynomial p(x) of
degree λ = 24, where the coefficients of p(x) are listed in
Table III. For clarity, Fig.6 shows the polynomial fitted curve
p(x) of AQF f(x) for target element w = 0. Thus, for given S,
the counting result of w = 0 by using p(x) is Count(S, 0) =⌊∑20

i=1 p(si)
⌉
= ⌊3.0499⌉ = 3, and the cumulative counting

error is
∑20

i=1 e(si) =
∑20

i=1(p(si)− g(si)) = 0.0499 < 0.5.
Remark: From Examples 3 and 4, it is easy to see that,

the cumulative counting error of counting w = 0 on S with
f(x) is different from that with p(x) (0.0784 and 0.0499,
respectively). This is because p(x) is the fitted polynomial of
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TABLE III
THE COEFFICIENTS OF POLYNOMIAL p(x) WITH DEGREE λ = 24 FOR AQF f(x).

η̃k η̃k+1 η̃k+2 η̃k+3 η̃k+4

k = 0 0.9315 1.4235× 10−9 −3.7059 −8.7902× 10−9 5.7551

k = 5 1.5909× 10−8 −4.6177 −1.3196× 10−8 2.1809 6.0434× 10−9

k = 10 −0.6535 −1.6816× 10−9 0.1298 2.9903× 10−10 −0.0175

k = 15 −3.4703× 10−11 0.0016 2.6153× 10−12 −9.8795× 10−5 −1.2332× 10−13

k = 20 3.8993× 10−6 3.3037× 10−15 −8.9183× 10−8 −3.8366× 10−17 8.9852× 10−10

degree λ = 24 for given f(x), and the counting error of p(x)
is related to the degree λ as well as the elements in S. Exactly,
if the degree λ and the elements in S change, the fitted curve
p(x) of degree λ will also change. So, the values p(si) will be
different for the same element si, thereby introducing distinct
cumulative counting errors.

 !  "  # # " !
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Fig. 6. Polynomial fitted curve p(x) of AQF f(x) for target element w = 0.

Finally, according to the coefficients of p(x) in Table III, we
choose γ = 21 and make use of p(x) to perform multiparty
counting on fixed-point numbers. As a result, the correctness
of using p(x) instead of f(x) for multiparty joint data counting
follows the Theorem 1.

VI. THE R-PDC SCHEME

In this section, an efficient R-PDC scheme is presented
by integrating F-FHE2 with the R-PDC method. First of all,
the F-FHE cryptosystem is deployed into multi-server system,
which contains n servers, P = {P1, P2, · · · , Pn}. Then, the
public parameter pp of F-FHE is published to the owners O,
the inquirer Q and the multiservers MS. On this basis, for
given data set S and target set W , the R-PDC scheme consists
of four algorithms, including Encap, Query, Answer and
Reduct, as follows.
• Encap(S): As described in Algorithm 1, the Encap

algorithm is executed to generate the encrypted data set D for
a given data set S. According to step 1-3 in this algorithm,
the owners O invokes Encpp of F-FHE, i.e.,

Csi = Encpp(si) = (csi,1, csi,2, · · · , csi,n)T ∈ Zn
p ,

2A candidate F-FHE cryptosystem is given in the supplementary material.

to encapsulate each data si in S for i ∈ [1,m], where si is
either integer or fixed-point number. Then, the share csi,k is
sent to the server Pk for k ∈ [1, n]. So, an encrypted data set
D = (Cs1 ,Cs2 , · · · ,Csm) ∈ Zn×m

p is generated and stored
on the multiservers MS by step 4, where the k-th row of D
indicates the shares stored on Pk.

Algorithm 1 Encap(S)

Input: the data set S = {s1, s2, · · · , sm}.
Output: the encrypted data set D = (Cs1 ,Cs2 , · · · ,Csm).

1: for i = 1 to m do
2: O computes Csi = (csi,1, csi,2, · · · , csi,n)T ← Encpp(si);
3: end for
4: O sends D = (Cs1 ,Cs2 , · · · ,Csm) to MS;
5: Return D = (Cs1 ,Cs2 , · · · ,Csm).

• Query(W ): In the Query algorithm (described in
Algorithm 2), the inquirerQ firstly constructs an AQF f(x) for
a given target set W by using the R-PDC method (see Fig.4).
Then, Q converts f(x) into a polynomial p(x) =

∑λ
k=0 η̃kx

k

of degree λ by using polynomial fitting method. After that, in
step 3-5, Q invokes Encpp to generate

Cη̃i = Encpp(η̃i) = (cηi,1, cηi,2, · · · , cηi,n)
T ∈ Zn

p ,

for coefficient η̃i, where i ∈ [0, λ]. Finally, the data share cηi,k

is sent to the server Pk for k ∈ [1, n]. So, a query parameter
Φ = (Cη̃0

,Cη̃1
, · · · ,Cη̃λ

) ∈ Zn×(λ+1)
p is constructed and

stored on the multiservers MS, where the k-th row of Φ
indicates the shares stored on Pk.

Algorithm 2 Query(W )

Input: the target set W .
Output: the query parameter Φ = (Cη̃0 ,Cη̃1 , · · · ,Cη̃λ).

1: Q constructs an AQF f(x) on W ;
2: Q converts f(x) into a polynomial p(x) =

∑λ
k=0 η̃kx

k;
3: for i = 1 to λ do
4: Q computes Cη̃i = (cηi,1, cηi,2, · · · , cηi,n)T ← Encpp(η̃i);
5: end for
6: Q sends Φ = (Cη̃0 ,Cη̃1 , · · · ,Cη̃λ) to MS;
7: Return Φ = (Cη̃0 ,Cη̃1 , · · · ,Cη̃λ).

• Answer(D,Φ): In the Answer algorithm, the multi-
servers MS, using Evalpp of F-FHE, jointly perform secure
fixed-point computation to generate a query response α. The
process is described in Algorithm 3. Specifically, according to
step 3-6, MS firstly use multiparty fixed-point fully homo-
morphism iteratively to compute the k-th power ski for each
element si in S. Then, the items η̃k · ski of p(si), denoted
as itemi,k, are iteratively computed in step 7-10. After that,
the result C

(λ+1)
p(si)

of p(si) is computed by accumulating all
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of itemi,k in step 11-14. Finally, for all m elements in S,
the results C

(λ+1)
p(sk)

are accumulated to get the sum C
(m)
α for

k ∈ [1,m] by step 15, where C
(m)
α is denoted as the query

response α = (cα,1, cα,2, · · · , cα,n)T ∈ Zn
p .

Algorithm 3 Answer(D,Φ)

Input: the encrypted data set D, and the query parameter Φ.
Output: the query response α = (cα,1, cα,2, · · · , cα,n)

T .
1: Set C(0)

α = 0;
2: for i = 1 to m do
3: Set (Csi)

1 = Csi and (Csi)
0 = 1;

4: for k = 1 to λ do
5: MS computes (Csi)

k ← Evalpp((Csi)
k−1, ∗,Csi);

6: end for
7: Set itemi,0 = Cη̃0 ;
8: for k = 0 to λ do
9: MS computes itemi,k ← Evalpp(Cη̃k , ∗, (Csi)

k);
10: end for
11: Set C(0)

p(si)
= 0;

12: for k = 0 to λ do
13: MS computes C

(k+1)

p(si)
← Evalpp(C

(k)

p(si)
,+, itemi,k);

14: end for
15: MS computes C

(i)
α ← Evalpp(C

(i−1)
α ,+,C

(λ+1)

p(si)
);

16: end for
17: Set C(m)

α as α = (cα,1, cα,2, · · · , cα,n)
T ;

18: MS sends α = (cα,1, cα,2, · · · , cα,n)
T to Q;

19: Return α = (cα,1, cα,2, · · · , cα,n)
T .

Algorithm 4 Reduct(α)

Input: the query response α.
Output: the counting result β.

1: Q obtains α = (cα,1, cα,2, · · · , cα,n)
T from MS;

2: Q computes β ← Decpp([α]) ∈ P;
3: Return β.

• Reduct(α): After receiving the query response α =
(cα,1, cα,2, · · · , cα,n)T ∈ Zn

p from the multiservers MS , the
inquirer Q invokes the Decpp algorithm of F-FHE to retrieve
the data counting result β ← Decpp([α]) ∈ P. The algorithm
process is described in Algorithm 4.

VII. SECURITY EVALUATION

In this section, we define two security properties, data and
query privacy, for the R-PDC scheme. Moreover, the presented
scheme is proved to be statistically secure against chosen
element attack with any counting query for query privacy and
against chosen element attack with designation query for data
privacy, respectively.

A. Query Privacy

In our security analysis, the R-PDC scheme is built on a
multi-server system with n servers, P = {P1, P2, · · · , Pn}.
Assume that the number of corrupted servers be less than t
under the control of adversary. Given the public parameter pp
under security parameter κ, any two different query elements,
s0 and s1, the query privacy of R-PDC requires that the
difference of two corresponding query parameters, Query(s0)
and Query(s1), are statistically indistinguishable for any

computational unbounded adversary A, who controls over
some subset T ⊆ P of n servers. That is,

Pr

b′ = b :

∀S ∈ {s0, s1}∗,Encap(S) = D,

b ∈R {0, 1},Query(sb) = Φ,

A(s0, s1,D, [Φ]T ) = b′

 ≤ 1

2
+ µ(κ),

(10)
for a negligible function µ(κ), where the data set S is any
sequence over s0 and s1, i.e., S ∈ {s0, s1}∗, [Φ]T denotes
partial information of Φ held by a set T of corrupted servers.

The query privacy of R-PDC can be modeled by an in-
distinguishable game against chosen element attack with any
counting query (called IND-CEA-CQ) as follows.

• Init. The adversary A chooses two different elements, s0
and s1, randomly and sends them to the owners O.

• Setup. The owners O constructs an arbitrary data set
S with s0 and s1, i.e., the sequence S ∈ {s0, s1}∗,
and generates an encrypted data set D by invoking
Encap(S). After that, O sends D to A.

• Challenge Query. The inquirer Q flips a coin b ∈ {0, 1}
randomly and computes Φ = Query(sb). Then, Q sends
Φ to the n servers.

• Guess. A exploits [Φ]T , offered by a set T of corrupted
servers, outputting a guess b′ ∈ {0, 1} of b.

We define by AdvIND-CEA-CQ
R−PDC (A) the advantage of A guess-

ing b correctly in the above IND-CEA-CQ game as

AdvIND-CEA-CQ
R−PDC (A)

= Pr

b′ = b :

∀S ∈ {s0, s1}∗,Encap(S) = D,

b ∈R {0, 1},Query(sb) = Φ,

A(s0, s1,D, [Φ]T ) = b′

− 1

2
.

(11)
Definition 10: A R-PDC scheme is said to be statistically

(t−1)-secure against chosen element attack with any counting
query if the advantage AdvIND-CEA-CQ

R−PDC (A) is negligible for all
computational unbounded adversaries A and any set T (|T | <
t) of corrupted servers.

Theorem 2: Our R-PDC scheme is statistically (t−1)-secure
against chosen element attack with any counting query in the
presence of a computational unbounded adversary if Shamir’s
(t, n)-threshold secret sharing scheme holds.

The theorem proof is shown in the supplementary material.

B. Data Privacy

The data privacy of the R-PDC scheme is defined as the
zero-knowledge of data counting process, the precondition
of which is that any information of stored data will not be
revealed to the servers in data counting process. Formally,
given the public parameter pp under security parameter κ, any
two different elements, s0 and s1, and any computational un-
bounded adversary A, who controls over some subset T ⊆ P
of n servers, we have

Pr

b′ = b :

b ∈R {0, 1},Encap(sb) = D,

σ ∈R {0, 1},Query(sσ) = Φ,

Answer(D,Φ) = α,

A(s0, s1, σ, [D]T , [Φ]T , [α]T ) = b′

 ≤ 1

2
+ µ(κ),

(12)
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TABLE IV
THE COMPUTATIONAL COMPLEXITY OF EACH ALGORITHM IN OUR SCHEME.

Algorithm
Number of Operations

Computational Cost Time Complexity
Multiplication Addition

Encap (2t− 3)nm (t− 1)nm (3t− 4)nm O(nm)

Query (λ+ 1)(2t− 3)n (λ+ 1)(t− 1)n (λ+ 1)(3t− 4)n O(n)

Answer
(2λ+ 1)((2t− 2)nγ

+4γ + (2t− 2)n+ 2)m
(2λ+ 1)((t+ 1)nγ

+(t+ 1)n+ 1)m+ (λ+ 1)m

(2λ+ 1)((3t− 1)nγ + 4γ +
(3t− 1)n+ 3)m+ (λ+ 1)m

O(nmγ)

Reduct n n− 1 2n− 1 O(n)

for a negligible function µ(κ), where [D]T , [Φ]T and [α]T
denote partial information of D, Φ and α held by a set T of
corrupted servers, respectively.

The data privacy of R-PDC can be modeled by an indistin-
guishable game against chosen element attack with designation
query (called IND-CEA-DQ) as follows.

• Init. The adversary A chooses two different elements, s0
and s1, randomly and sends them to the owners O.

• Setup. The owners O flips a coin b ∈ {0, 1} randomly,
and encrypts sb to generate an encrypted data set D by
invoking Encap(sb). Then, O sends D to the n servers.

• Challenge Query. A flips a coin σ ∈ {0, 1} ran-
domly, and requests the inquirer Q to compute Φ =
Query(sσ). Then, the n servers jointly compute α =
Answer(D,Φ).

• Guess. A exploits {[D]T , [Φ]T , [α]T } offered by a set T
of corrupted servers to output a guess b′ ∈ {0, 1} of b.

We define AdvIND-CEA-DQ
R−PDC (A) as the advantage of A guess-

ing b correctly in the above IND-CEA-DQ game, i.e.,

AdvIND-CEA-DQ
R−PDC (A)

= Pr

b′ = b :

b ∈R {0, 1},Encap(sb) = D,

σ ∈R {0, 1},Query(sσ) = Φ,

Answer(D,Φ) = α,

A(s0, s1, σ, [D]T , [Φ]T , [α]T ) = b′

− 1

2
.

(13)
Definition 11: A R-PDC scheme is said to be statistically

(t− 1)-secure against chosen element attack with designation
query if the advantage AdvIND-CEA-DQ

R−PDC (A) is negligible for all
computational unbounded adversaries A and any set T (|T | <
t) of corrupted servers.

Theorem 3: Our R-PDC scheme is statistically (t−1)-secure
against chosen element attack with designation query in the
presence of a computational unbounded adversary if Shamir’s
(t, n)-threshold secret sharing scheme holds.

The theorem proof is shown in the supplementary material.

VIII. PERFORMANCE ANALYSIS

In this section, the computation and communication perfor-
mance of the R-PDC scheme are evaluated theoretically and
experimentally. Note that, the presented R-PDC is built on the
F-FHE cryptosystem, so the performance of R-PDC is closely
related to F-FHE, which is described in the supplementary
material. In the experiments, the Iris dataset3 provided by the
UCI Machine Learning Repository is used for performance

3https://archive.ics.uci.edu/dataset/53/iris

evaluation. This dataset contains 150 instances and 4 features,
i.e., calyx length, calyx width, petal length and petal width,
where each instance belongs to one of 3 classes. For simplicity,
we extract real values of the feature “petal length” of all 150
instances to construct a set of data S with size m = 150 for
our experimental evaluation.

The number n of servers, the size m of data set and the frac-
tional part length γ of fixed-point number are three important
parameters that affect the performance of our scheme. The
other parameter, threshold t of SSS, is regarded as constant
since t ≤ n. In our experiment, we assume that t = 4 and
λ = 8 for the lightweight examples. All the programs were
executed on a Windows 10 (64-bit) PC with AMD Ryzen
7 4800H @2.90 GHz processor and 16G DDR4-RAM. A
parallel development environment was built in Java by using
MPJ Express4 to simulate multiparty computing.

A. Computational Complexity of The Presented R-PDC

We first analyze the computational complexity of our R-
PDC scheme. Here, the numbers of multiplications and addi-
tions in Zp are taken as the measurement standard. Table IV
lists the computational costs of main algorithms. It is easy to
see that the time complexity O(nm) of Encap is the quadratic
formula on m and n. But the time complexity O(nmγ)
of Answer is the cubic formula on m, n and γ. So, the
computational cost of Answer is higher than that of Encap.
Moreover, the time complexities of Query and Reduct are
O(n), which is linear correlation with n. Thus, the query and
reduct process of the inquirer Q is more efficient, compared
with joint computing of the multiservers MS.

Next, the correctness of theoretical results was verified by
experiments. In Fig.7(a), we show the experimental computa-
tion costs under different values of n when m = 55 and γ = 2,
where the right y-axis corresponds to the computational cost
of Answer. As shown in Fig.7(a), the computational costs of
the four algorithms, Encap, Query, Answer and Reduct,
increase linearly with n. Moreover, the computational cost of
Answer is significantly larger than those of the other three
algorithms. This is because the process of joint data counting
in Answer involves much more complex calculation steps.
For example, when n = 4, the computational cost of Answer
is about 60 seconds, but the computational costs of the other
three algorithms are less than 0.15 seconds.

4MPJ Express is an open source Java message passing library that allows
application developers to write and execute parallel applications for multicore
processors and compute clusters/clouds.
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Fig. 7. The trend curves of computational costs of algorithms. (a) m = 55, γ = 2, varying with the number n of servers. (b) n = 4, γ = 2, varying with
the size m of data set. (c) m = 55, n = 4, varying with fractional part length γ of fixed-point number.
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Fig. 8. The trend curves of communication costs of algorithms. (a) m = 20, γ = 2, varying with the number n of servers. (b) n = 4, γ = 2, varying with
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In Fig.7(b), we show the trend curves of experimental
computation costs under different values of m when n = 4
and γ = 2, where the right y-axis corresponds to the computa-
tional cost of Answer. Obviously, the computational costs of
Query and Reduct are approximately fixed, but for Encap
and Answer, their computational costs increase linearly with
m. Moreover, it can be see that the computational costs of
Query and Reduct are smaller than those of Encap and
Answer. For example, when m varies from 10 to 100, the
computational costs of Query and Reduct are fixed at
about 0.001 and 0.012 seconds, respectively. For the other two
algorithms, the computational cost of Encap is 0.16 seconds
when m is 60, but that of Answer reaches 90 seconds.

Fig.7(c) shows the experimental computation costs under
different values of γ when m = 55 and n = 4, where the
right y-axis corresponds to computational cost of Answer.
As shown in Fig.7(c), the computational costs of the three
algorithms, Encap, Query and Reduct, are approximately
fixed, but the computational cost of Answer increase linearly
with γ. Moreover, the computational cost of Answer is
larger than those of the other three algorithms. For example,
when γ varies from 1 to 10, the computational costs of
Encap, Query and Reduct are approximately fixed at
0.001, 0.015 and 0.165 seconds, respectively. When γ = 4,
the computational cost of Answer reaches 75 seconds, but
the computational costs of the other three algorithms are less

than 0.165 seconds. So, the computational cost of our scheme
is mainly concentrated in Answer, which is consistent with
the theoretical analysis result in Table IV.

B. Communication Complexity of The Presented R-PDC

We next pay attention to communication complexity. Let
|b| denote the transmitted data length in one time of com-
munication. Table V lists the communication costs of main
algorithms. It is easy to see that the communication complexity
of Encap is O(nm), which is the quadratic formula on m
and n. However, the communication complexity O(n2mγ) of
Answer is the quartic formula on m, n and γ. It means that
the communication cost of Answer is higher than that of
Encap. Moreover, the communication complexities of both
Query and Reduct are O(n), which is linear correlation
with n. Thus, compared with Query and Reduct, both
Encap and Answer require higher communications.

For clarity, Fig.8(a) shows the experimental communication
costs under different values of n when m = 20 and γ = 2,
where the right y-axis corresponds to communication cost of
Answer. As shown in Fig.8(a), the communication costs of
the three algorithms, Encap, Query and Reduct, increase
linearly with n, but the communication cost of Answer
increases quadratically with n. So, the communication cost of
Answer is higher than those of the other three algorithms. For
example, when n = 8, the communication cost of Answer is
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TABLE V
THE COMMUNICATION COMPLEXITY OF OUR SCHEME.

Algorithm Entities Communication
Cost (bits)

Communication
Complexity

Encap O → MS nm · |b| O(nm)

Query Q → MS (λ+ 1)n · |b| O(n)

Answer MS ↔ MS ((2n2 + n)γ +
n2)(2λ+1)m · |b| O(n2mγ)

Reduct MS → Q n · |b| O(n)

about 60MB, but those of the other three algorithms are less
than 160KB (Exactly, 160KB, 40KB and 8KB, respectively).

In Fig.8(b), we shows the experimental communications
costs under different values of m when n = 4 and γ = 2,
where the right y-axis corresponds to communication cost of
Answer. As shown in Fig.8(b), the communication costs of
the two algorithms, Query and Reduct, are approximately
fixed, but for Encap and Answer, their communication costs
increase linearly with m. Moreover, the communication cost of
Answer is larger than those of the other three algorithms. For
example, when m = 30, the communication cost of Answer
is about 24MB, but those of the other three algorithms are
about 120KB, 20KB and 4KB, respectively.

Fig.8(c) shows the experimental costs of communications
under different values of γ when m = 20 and n = 4, where the
right y-axis corresponds to communication cost of Answer.
Obviously, the communication costs of Encap, Query and
Reduct are approximately fixed, but the communication cost
of Answer increase linearly with γ. Moreover, the communi-
cation cost of Answer is larger than those of the other three
algorithms. For example, when γ = 6, the communication cost
of Answer is about 40MB, but those of Encap , Query and
Reduct are only 80KB, 20KB and 4KB, respectively. So, the
communication costs of our scheme is mainly concentrated in
multiparty joint computing of Answer.

In summary, the experimental results of R-PDC is consistent
with its theoretical analysis. Moreover, the whole performance
test indicates that our R-PDC scheme is enough efficient for
privacy-preserving queries.

IX. APPLICATIONS

The R-PDC method can be applied into various privacy-
preserving queries based on data mining algorithms. We,
taking the famous Naive Bayes Classifier and Apriori algo-
rithm as examples, illustrate how to integrate R-PDC with
these algorithms. Moreover, we show how to extend the R-
PDC method, called n-dimensional R-PDC, to develop more
practical applications.

A. Privacy-preserving Naive Bayes Classifier

Naive Bayes Classifier is a simple but efficient probability
classifier based on Bayes’ theorem. Exactly, given the attribute
values {a1, a2, · · · , am} that describe a new instance, the
Bayesian approach to classifying the instance is to assign the
most probable class value vmap ∈ V , where V is the set
of possible class values. Moreover, the Naive Bayes Classifier

simplifies assumption that the attribute values are conditionally
independent among them for given class values. Therefore, the
class output vmap of Naive Bayes Classifier can be reduced
as

vmap = argmax

(
P (vj)

m∏
i=1

P (ai|vj)

)
, vj ∈ V. (14)

According to this equation, the key of Naive Bayes Classifier
is to calculate the probabilities P (vj) and P (ai|vj), as follows.

First of all, the prior probabilities P (vj) can be estimated by
the formula P (vj) =

nj

n , where nj is the number of instances
with class value vj and n is the total number of instances in
the dataset. Undoubtedly, the number nj can be calculated by
our R-PDC method, i.e., nj = Count(Sv, vj), where Sv is
the set of class values of total instances in the private dataset.
Therefore, P (vj) can be obtained for the public n.

Next, let P (ai|vj) denote the conditional probability of an
instance with the attribute value ai belonging to a certain class
vj . We can calculate it by P (ai|vj) = P (aivj)

P (vj)
=

ni,j

nj
, where

ni,j is the number of instances with the attribute ai and class
vj . Similarly, the 2-dimensional R-PDC method for counting
ni,j is as follows: At first, two AQFs, fvj (x) and fai

(y), are
constructed to count vj and ai, respectively. Next, a bivariate
AQF fvj ,ai

(x, y) = fvj (x) · fai
(y) can be generated, where

fvj ,ai(x, y) ≈ 1 for the instance with attribute value ai and
class value vj simultaneously, and fvj ,ai(x, y) ≈ 0, otherwise.
Finally, the corresponding values of fvj ,ai

(x, y) are calculated
for all instances and accumulated to get the value

ni,j = Count(Sv ∪ Sa, {vj , ai}) ≈
n∑

k=1

fvj ,ai
(s

(v)
k , s

(a)
k ),

where Sv ∪ Sa denotes a two-dimensional dataset that com-
bines two attributes (v and a) together, s(v)k and s

(a)
k denote

the attribute values of the k-th instance in Sv ∪ Sa for v and
a. Therefore, the conditional probabilities P (ai|vj) is obtained
since nj is calculated by the R-PDC method.

Finally, the class with the highest probability is chosen as
the class output by Equation (14). Note that, the 2-dimensional
R-PDC method can be further extended to n-dimensional R-
PDC for a private dataset with multiple attributes.

B. Privacy-preserving Apriori Algorithm

Let’s consider a more complex application scenario. The
R-PDC method can be undoubtedly applied into Apriori5

algorithm for the induction of association rules. An association
rule is an implication in the form of X ⇒ Y , where X and Y
are sets of items, called itemsets, and X ∩ Y = ∅. An itemset
X with k items is called k-itemset. The support of X , denoted
by Support(X), is the percentage of transactions that contain
X to the total number n of transactions in the dataset. That is,
Support(X) = nX

n , where nX is the number of transactions
that contain X in the dataset.

An itemset X is called s-frequent if Support(X) ≥ sn,
where s indicates a required support threshold and 0 < s ≤ 1.

5Apriori is one of the best-known basic algorithm for mining frequent item
sets in a set of transactions.
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Actually, the main goal of Apriori algorithm is to find the
set of all s-frequent itemsets for a given support threshold s.
Thus, the key of Apriori is to calculate Support(X) of all
k-itemsets, i.e., to count nX in the dataset for the public n.

The R-PDC method can be directly used to count nX for
any 1-itemset X (k = 1) since only one item need to be
counted. If X is a k-itemset (k > 1), then it consists of
k items, written as X = {a1, a2, · · · , ak}. Similarly, the
k-dimensional R-PDC method can be used to count nX as
follows: At first, an AQF faj

(xj) is constructed to count
each item aj in X for j ∈ [1, k]. Next, a k-variable AQF
fa1,··· ,ak

(x1, · · · , xk) = fa1
(x1) · · · fak

(xk) can be gener-
ated, where fa1,··· ,ak

(x1, · · · , xk) ≈ 1 for any transaction con-
tains k-itemset X , and fa1,··· ,ak

(x1, · · · , xk) ≈ 0, otherwise.
Finally, the corresponding values of fa1,··· ,ak

(x1, · · · , xk) for
all transactions are calculated and accumulated to get the value

nX = Count(Sa1 ∪ Sa2 ∪ · · · ∪ Sak
, {a1, a2, · · · , ak}),

where Sa1∪Sa2∪· · ·∪Sak
denotes a k-dimensional dataset that

combines k items (i.e., {a1, a2, · · · , ak}) together. Therefore,
the value of Support(X) = nX

n is obtained for the public n.
According to the condition Support(X) ≥ sn, all s-frequent
itemsets X can be found from the given dataset.

X. CONCLUSION

In this paper, we present a new R-PDC method for privacy-
preserving queries on multisource data in real-number fields.
Meanwhile, a candidate F-FHE cryptosystem is deployed into
multi-server system over IoT to implement ciphertext-state
computation on fixed-point numbers. On this basis, we present
an efficient R-PDC scheme and provide the full security
proofs. The results of performance evaluations indicate the
efficiency of our scheme for privacy-preserving queries.

An intriguing avenue for further research is the extension
of our method from integer-based privacy computation to
the realm of decimal numbers. Additionally, considerations
could be extended to applying R-PDC into broader application
scenarios, such as financial data analysis and healthcare data
privacy protection, to further validate its practicality and
generalizability. These exploring work will provide substantial
support and insights for the advancement of privacy compu-
tation and establish a solid foundation for privacy-preserving
techniques on real-number data.
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