
SPESC-Translator: Towards Automatically Smart
Legal Contract Conversion for

Blockchain-Based Auction Services
E Chen , Bohan Qin , Yan Zhu ,Member, IEEE, Weijing Song, Shengdian Wang,

Cheng-Chung William Chu , Senior Member, IEEE, and Stephen S. Yau, Fellow, IEEE

Abstract—In recent years, advanced smart contract languages (ASCLs) have been proposed to solve the problem of difficult reading,

comprehension, and collaboration when writing smart legal contracts among people in different fields. However, this kind of languages

are still hard to put into practice due to the lack of an effective conversion method from the ASCLs to executable smart contract

programs. Aiming at this problem, we take SPESC as example to explore how to design conversion rules from the contract in it to the

target programming language in Solidity, and to propose a three-layer smart contract framework, including advanced smart-contract

layer, general smart-contract layer, and executable machine-code layer. These rules provide an approach to convert the definition of

SPESC contracting parties into party-contracts on target language, as well as to produce SPESC contract terms into main-contract on

target language. Moreover, the proposed framework specifies not only program architecture and storage structure on general smart-

contract layer, but also important mechanisms, including personnel management, timing control, exception handling, etc., which can

assist programmers to write smart contract programs. Furthermore, taking four SPESC contracts as testing objects, we provide the

whole process of converting from SPESC contracts to Solidity programs by the SPESC-Translator, and verify the efficiency and security

of the conversion process, including coding, deploying, running, and testing through Ethereum. The instance results show that the

conversion rules and the three-layer framework can simplify the writing of smart contracts, standardize the program structure, and help

programmers to verify the correctness of the contract programs.

Index Terms—Smart contract, blockchain, advanced smart contract languages, smart legal contract, SPESC, automated generation

Ç

1 INTRODUCTION

AS second-generation blockchain technology, smart con-
tracts have greatly enriched the functional expression

of blockchain to make application development more con-
venient. The term “smart contract” was originally coined by
Nick Szabo in 1995 [1]. Broadly speaking, smart contract is a
set of digital executable protocols [2] intended to make con-
tractual clauses partially or fully self-executing, self-enforc-
ing, or both. This means that smart contracts can essentially
be programmed to implement a wide variety of actions, so
as to provide an entire platform for new applications
designed to solve many real-world problems. Therefore, it
has attracted widespread attentions from academic and
industrial fields in recent years.

In a narrow sense, a smart contract is a computer program
deployed and run on a blockchain, and automatically executes
when predetermined terms and conditions are met. Exactly,
all related data of smart contract, including program codes,
intermediate states, and executed results, would be stored in
the blockchain to ensure that these data are not tamperedwith.
Moreover, the blockchain’s consensus protocols also verify the
correctness of running process by executing the smart contract
with the same input at all nodes. Therefore, the blockchain’s
security mechanism with tamper-proof and traceable features
makes smart contracts possible to be recognized by law.

Compared with Bitcoin’s script system, the existing block-
chain’s smart contracts can process more complex business
logic and have more flexibility to adopt blockchain for storing
various data (including contract intermediate states). There-
fore, almost of blockchain platforms and manufacturers (such
as Ethereum and Hyperledger Fabric) have developed smart
contract mechanisms to improve the usability of their prod-
ucts. For example, the Ethereum platform currently supports
two programming languages, Serpent and Solidity, where the
former is similar to Python and the latter is to JavaScript. As
another example, Hyperledger supports traditional languages
such as Go and Java. In addition, other platforms also provide
some development tools based on traditional programming
languages (such as C, C ++, Java) for smart contracts.

Motivation. In summary, the current smart contracts could
be divided into three categories in terms of language types
and operating environments, as follows:

� E Chen, Bohan Qin, Yan Zhu, Weijing Song, and Shengdian Wang are
with the School of Computer and Communication Engineering, University of
Science and Technology Beijing, Beijing 10083, China.
E-mail: chene5546@163.com, qinbohan@126.com, zhuyan@ustb.edu.cn,
{songweijing, wsd}@xs.ustb.edu.cn.

� Cheng-Chung William Chu is with the Computer Science Department,
TunghaiUniversity, TaichungCity 40730, Taiwan. E-mail: cchu@thu.edu.tw.

� Stephen S. Yau is with the School of Computing, Informatics, and Decision
Systems Engineering, Arizona State University, Tempe, AZ 85281 USA.
E-mail: yau@asu.edu.

Manuscript received 24 May 2020; revised 5 Mar. 2021; accepted 27 Apr. 2021.
Date of publication 4 May 2021; date of current version 7 Oct. 2022.
(Corresponding author: Yan Zhu.)
Digital Object Identifier no. 10.1109/TSC.2021.3077291

IEEE TRANSACTIONS ON SERVICES COMPUTING, VOL. 15, NO. 5, SEPTEMBER/OCTOBER 2022 3061

1939-1374 © 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See ht _tps://www.ieee.org/publications/rights/index.html for more information.

Authorized licensed use limited to: Univ of Science and Tech Beijing. Downloaded on November 09,2022 at 08:35:58 UTC from IEEE Xplore. Restrictions apply.

https://orcid.org/0000-0003-0761-821X
https://orcid.org/0000-0003-0761-821X
https://orcid.org/0000-0003-0761-821X
https://orcid.org/0000-0003-0761-821X
https://orcid.org/0000-0003-0761-821X
https://orcid.org/0000-0003-0413-1182
https://orcid.org/0000-0003-0413-1182
https://orcid.org/0000-0003-0413-1182
https://orcid.org/0000-0003-0413-1182
https://orcid.org/0000-0003-0413-1182
https://orcid.org/0000-0002-9159-745X
https://orcid.org/0000-0002-9159-745X
https://orcid.org/0000-0002-9159-745X
https://orcid.org/0000-0002-9159-745X
https://orcid.org/0000-0002-9159-745X
https://orcid.org/0000-0001-7479-3486
https://orcid.org/0000-0001-7479-3486
https://orcid.org/0000-0001-7479-3486
https://orcid.org/0000-0001-7479-3486
https://orcid.org/0000-0001-7479-3486
mailto:School of Computer and Communication EngineeringUniversity of Science and Technology BeijingBeijing10083China
mailto:School of Computer and Communication EngineeringUniversity of Science and Technology BeijingBeijing10083China
mailto:School of Computer and Communication EngineeringUniversity of Science and Technology BeijingBeijing10083China
mailto:School of Computer and Communication EngineeringUniversity of Science and Technology BeijingBeijing10083China
mailto:School of Computer and Communication EngineeringUniversity of Science and Technology BeijingBeijing10083China
mailto:wsd@xs.ustb.edu.cn
mailto:cchu@thu.edu.tw
mailto:yau@asu.edu

� Script-based smart contract, which supports simple cal-
culation and condition control through script instruc-
tions and Forth-like stack-based language defined in
the blockchain, such as the Bitcoin script system;

� General-purpose smart contract, which directly adopts
traditional programming language deployed in a vir-
tual machine or docker to interact with the block-
chain through a prescribed interface. For example,
the chaincode in the Hyperledger platform uses the
languages such as Java and Go. The Neo platform
provides the compilation of multiple languages
(such as C#, Java, and Python) into the instruction
set supported by NeoVM;

� Specific-purpose smart contract, which uses newdomain-
specified languages or adds special elements to tradi-
tional programming languages for interacting with
blockchain, such as Ethereum’s Solidity languagewith
special mechanisms (e.g., gas billing).

From the above categories, it is easy to see that smart con-
tract platforms and languages have become increasingly
mature and complete in recent years. However, they are dom-
inated by the general-purpose smart contracts at present, and
the specific-purpose smart contracts are still in the develop-
ment stage. Since smart contracts usually involve cooperation
in the different fields, such as IT, law, and finance, the current
smart contract programming languages remain some prob-
lems to be solved, such as being unfriendly to people in the
non-computer field and difficult to understand for those who
have not studied programming on blockchain. Specifically,
these languages have the following disadvantages:

� Smart contract language obeys the grammar of com-
puter languages, and is far from the form of real-
world legal contracts;

� Smart contract language requires great knowledge
and experience in computer, and is difficult for users
and legal personnel to understand;

� There is a lack of approach for direct generation from
real-world legal contract to executable smart contract.

These disadvantages make it very difficult to write a smart
contract, and hit an obstacle in communication between peo-
ple in different fields. Therefore, they restrict the efficient
development of smart contracts and the degree of public
acceptance.

To solve these problems, advanced smart contract lan-
guage (ASCL) has been proposed to build a bridge between
real-world legal contracts and blockchain-based smart con-
tracts. Through this bridge, ASCL helps people in different
fields to communicate through an easy-to-read and stan-
dardized syntax, and it can (semi-)automatically realize the
conversion to smart contract language on blockchain, so as
to assist programmers in writing smart contracts.

Related Work. Since the concept of smart contracts based on
blockchain was proposed, the scholars have done a lot of
researches in many aspects, including law, program design,
platform construction, etc., especially some new languages.
Many of these languages were to verify the correctness of the
contracts through formal methods, such as, the logic-based
languages [3] and the generic description language [4]. The
Flint language [5] was designed for writing robust smart con-
tracts with the following features: caller capabilities, safe asset

transfer operations, and default immutability, so as to enforce
the writing of safe and predictable code. The Obsidian lan-
guage [6] with components, including typestate-oriented pro-
gramming and resource type integrated into OO-style
language, makes it easier for programmers to write correct
program. The Scilla [7] is an intermediate level language to
provide a clean separation between the communication
aspect of smart contracts on blockchain and a programming
component. The former allows for the rich interaction pat-
terns, and the latter enjoys principled semantics and is amena-
ble to formal verification.

In contrast with the above work, it is still relatively less
for the research on the conversion from real-world contracts
to programming language by establishing high-level or
advanced smart contract languagemodels. Several researches
related to ASCL will be presented as follows. O’Connor [8]
proposed a functional language called Simplicity, which pro-
vides static analysis to derive upper bounds on the computa-
tional space and time resources needed in Bitcoin Script and
Ethereum’s EVM prior to execution. This work is conducive
to solving the prepayment problem of smart contract.

Regnath et al. [9] adopted natural language to propose a
new kind of smart contract language called SmaCoNat in
2018. Some additional mechanisms, e.g., limiting the use of
user-defined variable names and nested structures, section-
ing the code, expanding the basic data types, defining natu-
ral language syntax, and unifying identity representation,
were used to significantly enhance the readability and secu-
rity of the smart contracts. Choudhury et al. [10] provided a
new framework of automatic generating smart contracts.
This framework adopted several semantic rules to encode
knowledge in a specific domain, and then used an abstract
syntax tree to incorporate the required constraints. Finally,
the syntax of the constraints was encoded as a smart con-
tract on blockchain. Biryukov et al. [11] introduced a new
smart contract language called Findel, which mainly
describes the action of currency transfers and the expression
of multiplication, logic and time series from the perspective
of financial engineering. However, Findel only contains two
basic actions (Zero and One), two multiplication expres-
sions (Scale and ScaleObs), three logical expressions (And,
Or and If), and one time expression (Timebound), so its
functionality is slightly single for various contracts.

Another exploratory research was a legal-oriented advan-
ced smart contract language, called SPESC [12], that is used to
solve the problem of hard-to-understanding for non-com-
puter personnel. The SPESC language was similar to natural
language with syntax elements in the real-world legal con-
tract, as the first smart legal contract language. Moreover, the
SPESC contract structure consists of four parts: contract
name, parties, terms, and additional information, so as to
make it closer to a real-world contract. Meanwhile, the addi-
tional information was employed to record the important
data and the change of contract states by writing them into
the tamper-proof blockchain.

In comparison with other languages, SPESC has an easy-
to-read syntax, a clear structure, and a complete definition
of syntax model, so that it might conform to the develop-
ment direction of the future smart legal contracts. Moreover,
the SPESC language is closer to the requirements for
advanced smart contract languages in this paper. However,

3062 IEEE TRANSACTIONS ON SERVICES COMPUTING, VOL. 15, NO. 5, SEPTEMBER/OCTOBER 2022

Authorized licensed use limited to: Univ of Science and Tech Beijing. Downloaded on November 09,2022 at 08:35:58 UTC from IEEE Xplore. Restrictions apply.

the issue of no generator to translate the SPESC instance into
an executable smart contract code will directly influence its
practical application, so that we will continue to study this
issue on SPESC.

We next turn our attention to the work on generation of
smart contract codes. Due to the fact that the researches of
smart contracts are currently in the stage of language explo-
ration, there is little work on automatic conversion or gener-
ation of contract codes. Then, two recent researches on this
field will be introduced as follows.

Hamdaqa et al. [13] proposed a reference model (iCon-
tractML) and its modeling language for building smart con-
tracts in a graphical way. Similar to Unified Modeling
Language (UML), the iContractML can support five graphical
objects, including participants, assets, transactions, conditions,
and relationship. Moreover, they provided a conversion
method from the reference model to three major platforms,
i.e., Ethehereum, Microsoft Azure, and Hyperledger Com-
poser. This kind of conversion is also relatively straightfor-
ward and simple since the five graphical objects are close to
the objects in the programming language. In addition, this
model and itsmodeling language is used as aUML-likemodel
for smart contract design, but themodel does not comply with
the form of legal contract towrite a text recognized by law.

W€ohrer et al. [14] proposed a Contract Modeling Lan-
guage (CML), which supports a syntactic structure, similar
to SPESC, with common contract-specific concepts, e.g.,
party, asset, transaction, event, function, and clause constraints.
Also, the coarse conversion method was given from CML to
Solidity, including that party, asset and transaction are con-
verted into structure in Solidity, event, function and clause
constraints are mapped to function, especially clause con-
straints are mapped to function modifier with conditional
checks. However, this paper merely draws simple diagrams
to illustrate conversion, and does not give specific conver-
sion rules. The proposed method in SPESC-Translator is
also suitable for CML language due to the similar structure
between them. In addition, the mechanism, dealing with
PullPayment pattern and supporting floating-point imple-
mentation, can be referred to as a supplement to our work.

In summary, the closer the grammar of smart contract
language is to natural language in legal contract, the richer
the expression of intention, and the more complex it is to
convert into executable codes. On the contrary, the closer
the smart contract language is to the programming lan-
guage, the simpler the conversion, but the more difficult it
is for non-computer personnel to understand.

Contribution. Aiming at the problem of lack of conversion
methods from ASCL to executable smart contract language,
in this paper we design an executable code generator for
SPESC language through the instantiation of common con-
tracts. Taking Solidity as a target programming language, we
establish the conversion relationship from SPESC to execut-
able program. The presented generatorwill be able to simplify
the writing of smart contracts, standardize the program struc-
ture of smart contracts, and assist programmers to verify the
correctness of code. Themainwork is listed as follows:

1) We propose a three-layer smart contract framework,
which consists of advanced smart contract, general
smart contract, and executable machine code. The

general features of real-word legal contract, e.g., party
description, right and obligation, contract terms with time
limit and manner on enforcement, contract conclusion, are
introduced to formal grammar of advanced smart con-
tract layer.Moreover, benefiting fromasset transaction
model built on deposit; transfer; withdraw from con-
tracting accounts, the three-layer framework provides
a legitimate approach to circulate digital assets by
advanced smart contract languages in accordance
with real-world legal contracts.

2) We design a series of conversion rules and program
structure from SPESC to target programming lan-
guage, e.g., Solidity. These rules provide an approach
to generate party sub-contracts of target language
according to the definition of SPESC contracting par-
ties and their actions, as well as to produce main sub-
contract of target language according to the terms of
SPESC contract. In addition, several important mecha-
nisms, e.g., party personnel management, program
timing control, exception detection, etc., are integrated
into the target program during the conversion from
SPESC to Solidity. These mechanisms can assist pro-
grammers in semi-automatically writing smart con-
tract programs.

Taking four SPESC contracts as our test objects, we pro-
vide the whole process (including coding, deploying, run-
ning and testing) of the conversion rules from SPESC
contracts to executable programs (average 85 percent con-
version rate and 5.9 times production ratio) in Solidity.
Moreover, the converted contracts went straight through
several vulnerability detection tools for smart contracts,
except for three repairable ones.

Organization. The smart contract framework containing
ASCL is introduced in Section 2. The syntax of SPESC is
described in Section 3. The auction process is analyzed in
Section 4. We show how to write an auction contract
through SPESC in Section 5. Next, the SPESC compilation
rules is presented on the target language Solidity. In Sec-
tions 7 and 8, we deploy and test the generated Solidity
smart contracts, and then make a conclusion.

2 FRAMEWORK OF SMART CONTRACT SYSTEM

2.1 System Goals

As smart contract is considered as a self-executing contract,
blockchain-based smart contract system generally refers to
a system that supports the contract’s programming, compil-
ing and automatic execution. The existing smart contract
systems generally have two layers: general smart-contract
layer (GSCL) for contract’s programming and compiling,
and executable machine-code layer (EMCL) for contract’s
automatic execution.

In this paper, a new advanced smart-contract layer is
placed on the top of these two layers, so that a three-layer
smart contract framework is proposed as follows:

� advanced smart-contract layer enhances the normaliza-
tion and legibility of contracts.

� general smart-contract layer helps generate the execut-
able contracts by using the existing smart contract
language, like traditional programming language.

CHEN ETAL.: SPESC-TRANSLATOR: TOWARDS AUTOMATICALLY SMART LEGALCONTRACTCONVERSION FOR BLOCKCHAIN-BASED... 3063

Authorized licensed use limited to: Univ of Science and Tech Beijing. Downloaded on November 09,2022 at 08:35:58 UTC from IEEE Xplore. Restrictions apply.

� executable machine-code layer ensures the automatic
execution of these contracts.

With the help of the advanced smart-contract language,
this new layer provides a higher contract-oriented encapsu-
lation than the general smart contract language. The rela-
tionship between these two languages is similar to that
between high-level and low-level programming languages,
such as SQL and C++, or Rython and Java. Exactly, the fol-
lowing requirements should be fulfilled on this framework:

� The contract should be easier to read and understand
on advanced smart contract language;

� Advanced smart contract language should simplify
and standardize the programming of smart legal
contracts;

� A translator should be developed to generate the pro-
gram framework of smart contracts on target language.

2.2 Framework

In Fig. 1, we illustrate a common workflow by which con-
tracting parties are allowed to develop smart contracts on
the proposed three-layer framework. In this framework, the
workflow can be described as follows:

1) A user starts with an instance (advanced smart con-
tract or smart legal contract) of ASCL in terms of real-
world contract or intention of contracting parties.

2) The instance can be translated into a program (gen-
eral smart contract) written in the existing smart con-
tract language through advanced smart contract
language translator (in short translator), so that the
program is compiled into the target code executed
on blockchain’s virtual machine through traditional
programming language compiler.

3) When an external event or internal transaction meets
the logical conditions of contract terms, both the tar-
get code and running state are loaded into the virtual
machine and then triggered, and the final results
(including value and state) will be written back into
the blockchain.

Furthermore, we illustrate the main entities and proper-
ties involved in this workflow as follows.

2.2.1 Real-World Contract

Real-world contracts are legally valid after they are estab-
lished and signed in compliance with law. The written form
of real-world contract is relatively free, and there is no

strictly prescribed format. Even if there are ambiguities or
defaults in contracts, the justice institutions can make a legal
decision from true intentions of contracting parties. In com-
parison with current contracts, real-world contracts have
the following features:

� They are legally valid;
� Using natural language and free format;
� Once a dispute arises, judge can reach a legal decision.

2.2.2 Advanced Smart Contract

Derived from real-world contract, the advanced smart con-
tract tends to integrate the features of computer programs,
laws and finance together. It can express contract intentions
in a way that is easier to understand than the programming
language and more standardized than natural language.
This kind of contract adheres to the grammatical rules in
the advanced smart contract language, e.g., SPESC, which
has the following features:

� Refer to the structure of real-world contract;
� Express sequential relationship among terms through

temporal logic;
� Provide the natural-language-like grammar.
There have existed many discussions on smart contracts

from a legal perspective. Kasprzyk [15] discussed the present
legislation with regard to the legal definition of smart contract,
especially actual and potential conflicts between smart con-
tract and established principles of contract law. Goldenfein
et al. [16] discussed the emergence of smart contracts as legal
conduct around blockchain platforms and automated transac-
tions. Allen et al. [17] analyzed smart contracts from a natural
language perspective. In addition, Gomes [18] applied the the-
oretical andmethodological framework of the Economic Anal-
ysis of Law to investigate the characteristics and possibilities
of adopting smart contracts under the perspective of the Bra-
zilian legal order and its insertion in the Creative Economy.

2.2.3 Smart Contract

The existing smart contract language is similar to the tradi-
tional programming language, but special elements or oper-
ations related to the blockchain are designed or predefined
on it. Moreover, event-triggered mechanism is adopted to
help smart contract express the interaction process among
multiple parties. So, unlike traditional agreement mecha-
nism that rely on human intervention or approval to execute
the intended function of the contract, the deployed code of
smart contract has no choice but to execute the triggered
functions automatically. In brief, the current mainstream
smart contract languages, such as Solidity, Java, GO, etc.
have the following features:

� Constructed on Turing-complete language with pow-
erful expression ability;

� Triggered by external events;
� Predefine special elements or operations related to

the blockchain.

2.2.4 Machine Code and Execution

After a smart contract is compiled to generate machine
code, it may be deployed to the blockchain. And then, the

Fig. 1. Advanced smart contract framework.

3064 IEEE TRANSACTIONS ON SERVICES COMPUTING, VOL. 15, NO. 5, SEPTEMBER/OCTOBER 2022

Authorized licensed use limited to: Univ of Science and Tech Beijing. Downloaded on November 09,2022 at 08:35:58 UTC from IEEE Xplore. Restrictions apply.

deployed code will be run in a virtual machine or a con-
tainer (docker) once it is triggered by external events or
internal transactions. After execution, the transaction data
and program states are written back to the blockchain, and
the blockchain’s consensus protocol is able to ensure that
they are always consistent across all nodes. In short, the
deployment and execution of the machine code are mainly
divided into the following steps:

� Deploy smart contracts: publish the compiled machine
code to the blockchain, so that other nodes participat-
ing in the consensus can obtain them for verification;

� Execute smart contract: restore the contract state by
downloading code and data stored in blockchain
into memory, and then run them in a local virtual
machine or container;

� Publish the execution results: after running the contract
to response external events or internal transactions,
the execution result will be agreed with other con-
sensus nodes, and finally upload to the blockchain.

3 SPESC SYNTAX

In this section, we turn our attention to the syntax of SPESC
language. The SPESC refers to the common structure of
real-world contract, which consists of four parts: title, par-
ties, terms and additional informations, as follows:

Definition 1 (Contract). Contract in SPESC is defined as

ContractContract ::¼ TitlefPartiesþ TermsþAdditionalþPartiesþ TermsþAdditionalþg;

where þ denotes multiple entries are allowed.

Generally, a contracting party is one who holds the obliga-
tions and receives the benefits of a legally binding agreement.
There are at least two parties involved in a contract, and some-
times a third party beneficiary may be named. Also, the par-
tiesmay be individuals, organizations, or groups.

The main attributes of parties should be recorded in the
Parties of contract, as follows:

Definition 2 (Parties). Parties in SPESC is defined as

PartiesParties ::¼ party groupparty group?PartyNamefFieldþActionþg;

where ? denotes the keyword is optional.

In the above definition, the optional keyword “group”
indicates the parties are a group. The entry Field denotes a
list of attributes of parties, and the entry Action states the
parties’ rights and obligations in the contract.

Single party refers to individual who has certain rights or
obligations in a contract, such as buyer or seller. Party group
refers to multiple individuals with the same rights and obli-
gations in a contract, such as voters, bidders, etc. In addi-
tion, party group can not only be appointed in advance
before the execution of contract, but also be joined or with-
drawn dynamically during the execution of contract.

The definition of parties is to make convenient for process-
ing and recording the parties’ information. Each individual
has a corresponding account address in blockchain, so that the
address is included into the attributes of party by default.
Moreover, the address can not only be set to specify the party’s

identity when signing the SPESC contract, but also be changed
based on the contract terms according to runtime conditions.

The contract terms are divided into two types: right
terms and obligation terms. Exactly, a right term indicate an
action that can be performed under certain conditions, and
a obligation term indicate an action that must be completed
under certain conditions. Actions, not written in the con-
tract, represent that they will be forbidden. In SPESC, the
contract terms are defined formally as:

Definition 3 (Terms). Terms in SPESC is defined as:
Terms::= term tname: PartyName (shall j can) action
(when PreCondition)?
(while AssetTransaction+)?
(where PostCondition)?.

In the above definition, PartyName indicates the party
name defined in Parties, and action refers to the action to be
performed. In addition, PreCondition represents the precon-
ditions that should be satisfied before the execution of term,
AssetTransaction indicates the asset transactions accompa-
nying the execution of term, and PostCondition represents
the post-conditions that should be satisfied after the execution
of term. The basic manner of distinguishing pre-condition
from post-condition is that the business logic of contract can
be expressed by pre-condition and time expression, but be
restricted by post-condition in case of unexpected situation.

3.1 Asset Transaction

In the contract term, the asset transaction, shortened to
AssetTransaction, proclaims the special operation used to
transfer an asset. In order to inspect and trace the process of
smart contract, all assets must be transfered through the
account associated with the contract, called contracting
accounts. For example, an asset transaction from A to B
requires that the asset is transfered from A to the contract-
ing account, and then transfered from the contracting
account to B. Through the above method, the contract is
convenient for checking the transfer conditions and the
amount according to the term’s AssetTransaction, and the
transfer information is recorded during the execution of
contract. Therefore, the asset transactions should be divided
into two types: deposit user’s asset to contracting account,
and transfer the asset in contracting account to user’s
account. as shown in Fig. 2a.

For the sake of asset’s security, the operation of transfer-
ring assets from user’s account to contracting account can
only be performed on his own initiative rather than compul-
sory enforcement. Thus, it should be necessary to distinguish
the executor account from other accounts as shown in Fig. 2b.
The operations of transferring assets in AssetTransaction can
be divided into three parts:

Fig. 2. Different operations in asset transaction.

CHEN ETAL.: SPESC-TRANSLATOR: TOWARDS AUTOMATICALLY SMART LEGALCONTRACTCONVERSION FOR BLOCKCHAIN-BASED... 3065

Authorized licensed use limited to: Univ of Science and Tech Beijing. Downloaded on November 09,2022 at 08:35:58 UTC from IEEE Xplore. Restrictions apply.

� deposit: the assets are deposited actively from the
executor into the contract;

� withdraw: the assets are withdrew from the contract
to their owner according to the contract terms;

� transfer: the assets are transfered from the contract to
another account according to the contract terms.

Specifically, the AssetTransaction is defined as:

Definition 4 (AssetTransaction). Asset transactions in the
SPESC is defined as:

AssetTransaction::=
{Deposit} deposit (value ROP)? AssetExp
j {Withdraw}withdraw AssetExp
j {Transfer} transfer AssetExp to Target

In the above definition, ROP represents the relational
operation, including > , < ,¼ , >¼ , and <¼ , e.g., deposit
value >¼ $10. AssetExp represents the asset expression,
which is used to describe the transferred asset, and Target
represents the target account for transferring asset, e.g., trans-
fer $10 to Buyer.

In three types of asset operations, the deposit operation is
different from withdraw and transfer operations because the
latter must have been agreed in advance. This also means the
withdraw and transfer operations need to be accurately
described by using constants or variables in contract. How-
ever, it is not necessary for the deposit operation to directly
stipulate the asset under the contract considering that the user
must performs the deposition actively. For example, the con-
tract described in Section 5 can limit to the current highest
price rather than directly specify the price that the bidders
deposit.

As far as implementation is concerned, the asset opera-
tions must depend on smart contract platform and target
language, e.g., there is no restriction on the account’s type
in the Ethereum platform which may be either a contracting
account or a user’s account. Moreover, considering that the
contract in Solidity can define a default function to deal
with the received assets (Ether), it is necessary to prevent
the security risks from transferring assets to unknown
accounts. Therefore, the contracting parties would better
replace the transfer operation by actively withdrawing
asset. For example, assume A intend to transfer a pledged
loan from contracting account to B, it is always secure to let
the recipient Bwithdraw his loan himself.

4 AUCTION

In this section, we will illustrate the SPESC generator through
an auction contract instance, so as to confirm the generated
contract, further to affirm the availability of three-layer smart
contract framework. Auction is a kind of spot trading mode
where the institution plays an important role to accept the
entrustment of owner. The institution also displays the auc-
tioned goods to buyer at the specified time according to cer-
tain rules, makes public bidding, and finally sells the goods to
the buyer who conforms to rules. This paper mainly
addresses the auction contracts with the highest price. In tis
paper, the smart contract is referred to as the institution spe-
cialized in auction business.

The auction contract involves two parties: auctioneer who
is an enterprise legal person engaged in auction activities, and

bidders who are some citizens, legal persons or organizations
to participate in bidding for auction targets. As shown in
Fig. 3, the highest bidding process is described as the follow-
ing steps.

� The auctioneer starts the auction system after setting
a reserve price and an auction end time, and waits
for the auction to end;

� The bidders can bid anytime during the system. If
the bid is greater than the current highest price, the
system records it as new highest price, puts the bid
into the fund pool, and returns the bid paid by the
previous highest bidder; otherwise, the bidder fails
and the bid is returned;

� After the auction time is over, the auctioneer can col-
lect the highest bid from the fund pool.

5 SPESC-BASED AUCTION CONTRACT

According to the above-mentioned auction process, the
SPESC-based contract mainly consists of three parts: parties,
terms, and additional information, which are described as
below.

5.1 Parties

As mentioned in Section 4, the auction contracts include two
parties: the bidders and the auctioneer. At first, the state-
ment of bidders is defined as follows:
1: party group bidders{

2: amount : Money

3: Bid()

4: WithdrawBid()

5: }

The bidders is a group and contains an attribute amount
with Money type. This attribute is used to record the bidder’s
fund pool. The BidðÞ operation declares that the bidder has
right to deposit money and bid for the goods. Moreover, the
WithdrawBidðÞ operation is to refund invalid bids.
1: party auctioneer{

2: StartBidding(reservePrice : Money,

3: auctionDuration : Date)

4: CollectPayment()

5: }

The auctioneer indicates an individual who is the owner
of the goods. There are two operations, StartBiddingðÞ and
CollectPaymentðÞ, that the auctioneer can perform. Exactly,
when performing the StartBiddingðÞ, the auctioneer need to
enter two parameters: reserve price and auction end time.

5.2 Additional Information

There are three variables defined in this contract:
1: highestPrice : Money

2: highestBidder : biddersBiddingStop

3: BiddingStopTime : Date

The first variable highestPrice is the Money type which
records the current highest price, the second variable
highestBidder is the bidders type to record the current

3066 IEEE TRANSACTIONS ON SERVICES COMPUTING, VOL. 15, NO. 5, SEPTEMBER/OCTOBER 2022

Authorized licensed use limited to: Univ of Science and Tech Beijing. Downloaded on November 09,2022 at 08:35:58 UTC from IEEE Xplore. Restrictions apply.

highest bidder, and the third variable BiddingStopTime is
the Date type to record the end time of the auction.

The additional information will be recorded in block-
chain to ensure that the blockchain records not only the cur-
rent state of contract, but also the history of the step-by-step
execution process. Since blockchain stores data in a sequen-
tial and unchangeable way, it guarantees the immutability
and traceability of execution states in smart contract. There-
fore, it is necessary to define the key variables in the addi-
tional information.

5.3 Contract Terms

In Fig. 4, we show a SPESC-based aucton contract that
includes five terms to specify the auction rules. In terms of
the procedure in Section 4, there are three actions, start auc-
tion, bid, and collect payment, that must be triggered
actively by the participants. These actions will be converted
into five terms.

As shown in Fig. 5, a Petri nets is used to illustrate the
state transition diagram of the auction process. From this
figure, it is easy to see that the contract consists of four states
(represented by a circle) and five actions (by a segment). The
states includes: Active, Bidding, BiddingEnd, ContractEnd,
and the actions include StartBidding, Bid, WithdrawBid,
TimeOut, and CollectPayment. Moreover, the action Time-
out will be triggered automatically by the contract system,
and four remaining actions are triggered by extern events
derived from the user.

In terms of four above-mentioned actions, the contract
terms are written as follows.

Term 1. The term corresponding to the action StartBid-
ding is used to initial the contract, which is defined as
follows:
1: term no1 : auctioneer can StartBidding,

2: when before auctioneer did StartBidding

3: where highestPrice = reservePrice and

4: BiddingStopTime =auctionDuration+ now.

This term indicates that only auctioneer has the right to
trigger the action for initiating the auction (StartBidding).
After the action is executed, the current highest price
(highestPrice) shall be set to the reserve price (reservePrice)

entered by auctioneer, and the end time (BiddingStopTime)
shall be the current time (now) plus the auction duration
(auctionDuation).

Term 2. The term corresponding to the action Bid is
defined as follows:
1: term no2 : bidders can Bid,

2: when after auctioneer did StartBidding and

3: before BiddingStopTime

4: while deposit $ value > highestPrice

5: where highestPrice = value and

6: highestBidder = this bidder and

7: this bidder::amount = this bidder::

Origin amount + value.

The bidders can bid to the contract by executing this term
(Bid) after the auctioneer initiates the auction and before auc-
tion end. Among them, the condition “after auctioneer did
StartBidding” expresses the time after auctioneer initiates the
auction, and “before BiddingStopTime” indicates the time
before the end of auction. If the bid (expressed by value) is
greater than the current highest price (hightestPrice), the
actionBidwill succeed; otherwise, it fails.

Fig. 3. The auction process.

Fig. 4. SPESC-based auction contract.

Fig. 5. State transition of auction on Petri net.

CHEN ETAL.: SPESC-TRANSLATOR: TOWARDS AUTOMATICALLY SMART LEGALCONTRACTCONVERSION FOR BLOCKCHAIN-BASED... 3067

Authorized licensed use limited to: Univ of Science and Tech Beijing. Downloaded on November 09,2022 at 08:35:58 UTC from IEEE Xplore. Restrictions apply.

After the term is executed, the highest bidder’s attribute
(this bidder :: amount) should record the sum of new high-
est value and the amount of failed bids. For convenience,
the keyword Origin represents the value before the term is
executed, so that the amount of failed bids is obtained by
this bidder :: Origin amount. The current highest price and
the highest bidders should be set to the current bid (value)
and the bidder (this bidder).

Term 3. As described in Section 5, the transfer refunding
an invalid bid has a big security risk in that any account
may be registered as a bidder on target language Solidity.
Therefore, it is more secure for recipients to withdraw their
own money. The WithdrawBid will be added when the con-
tract was written.

The WithdrawBid term can be divided into two sub-
terms according to the fact whether or not the bidder is the
highest Bidder. The first sub-terms is defined as:
1: term no3_1 : bidders can WithdrawBid,

2: when this bidder is not highestBidder and

3: this bidder::amount > 0

4: while withdraw $this bidder::amount

5: where this bidder::amount = 0

This term indicates that the bidder can withdraw the bid
if he is not the highest bidder and there is a deposit in the
current account (this bidder :: amount > 0). After the with-
draw operation is successfully executed, the bidder’s
deposit record should be cleared. Furthermore, the second
sub-terms is defined as:
1: term no3_2 : bidders can WithdrawBid,

2: when this bidder is highestBidder and

3: this bidder::amount > highestPrice

4: while withdraw $this bidder::amount -

highestPrice

5: where this bidder::amount = highestPrice

This term indicates that the bidder can withdraw the bid
if he is the highest bidder and there is a failed bid in the cur-
rent account (this bidder :: amount > highestPrice). After
the withdraw operation is successfully executed, the
bidder’s deposit record should be current highest price.

Term 4. The term corresponding to the action StopBid-
ding is defined as follows:
1: term no4 : auctioneer can CollectPayment,

2: when after BiddingStopTime

3: andbeforeauctioneerdidCollectPayment

4: while withdraw $highestPrice.

This term indicates that the auctioneer is allowed to stop
bidding for collecting the payment (by taking out the high-
est price) when the auction time is over and the auctioneer
has not enforced this term.

6 TARGET CODE GENERATION

Through the example of auction contract, we describes how
to generate the target code of SPESC-based contracts. The
target code will be built in Solidity that is an object-oriented
programming language for the Ethereum Virtual Machine
(EVM) [19], [20]. More importantly, we require that the
code generation should be a (semi-)automatic process,

called SPESC translator, for conversing SPESC contracts to
Solidity codes.

The SPESC-Translator offers a program architecture of the
converted contracts with one main-contract and some party-
contracts. Specifically, these two contracts are described as

� Main-contract corresponds to the principal part of
SPESC-based contract which includes the definition
of variables, modifiers and auxiliaries, as well as the
description of functions derived from terms.

� Party-contract is a party-oriented contract which is
mainly responsible for the management of party’s
personnel data, the response of events, and the query
of history records.

Taking the previous SPESC contract as an example, we
will describe how to generate these two kinds of contracts.

6.1 Framework of Target Code

As shown in Fig. 6, we show the class structure of auction
contract in Solidity language automatically generated by
the SPESC translator. Moreover, the color lines are used to
illustrate the conversion regulation from the SPESC contract
to the Solidity code. On the whole, the generated contract in
Solidity consists of three parts: an auctioneer’s party-con-
tract (called auctioneer), a bidder’s party-contract (bidders)
and a term-derived main-contract (auction).

First, derived from the auctioneer’s definition in SPESC,
the auctioneer contract contains the account address of the
auctioneer, registration and query functions for the person-
nel attributes, and some records of two terms, StartBidding
(no1) and CollectPayment (no4). The reason of placing these
two terms here is that they will be performed by the
auctioneer.

Second, converted from the bidders’ definition in SPESC,
the bidders contract is a group-oriented party-contract that
includes a new structure, called bidderstype, consisting of an
address and the variable ’amount’ defined in SPESC, in
order to manage the dynamic bidders. Based on this, the
bidders contract contains a structure array, a mapping table,
functions for personnel joining and query, interface with
getter and setter of the amount, and so on.

Finally, derived from all terms in the SPESC contract, the
generated main-contract contains the definitions of parties,
three additional information (highestPrice, highestBidder,
BiddingStopTime), two modifiers (onlybidders and only
auctioneer) and four functions generated from five terms.
The reason of four functions instead of five ones is that both
terms no3_1 and no3_2 declare the same action Withdraw
Bid, so only one function is generated.

In addition, the SPESC-Translator can provide many
operations for party management in the process of transla-
tion. Some unused management operations, such as obtain-
ing a list of party groups, deleting individuals, will be
provided in the form of annotations, but they can be uncom-
mented if the programmer want to use them. For the terms
that do not participate in timing control, such as Bid and
WithdrawBid, the attributes and functions related to the
execution states will not be generated in the target code.
However, the actual execution states can still be obtained
and traced from the blockchain.

3068 IEEE TRANSACTIONS ON SERVICES COMPUTING, VOL. 15, NO. 5, SEPTEMBER/OCTOBER 2022

Authorized licensed use limited to: Univ of Science and Tech Beijing. Downloaded on November 09,2022 at 08:35:58 UTC from IEEE Xplore. Restrictions apply.

6.2 Generation of Party-Contracts

In the conversion process, the SPESC-Translator generates a
Solidity party-contract for each contracting party defined in
SPESC contract. According to the different parties, the party-
contracts are divided into two types: individual party-con-
tract and groupparty-contract, as shown in Fig. 7.

6.2.1 Case 1: Individual Party-Contract for the

Auctioneer

As shown in the left of Fig. 7, the individual party-contract uti-
lizes a variety of variables and methods. The variables store
an arbitrary piece of data, including account address,member
attributes, term enforcement records, for later use. The meth-
ods specify some functions to manage the personnel informa-
tion and term’s execution, e.g., personnel management,
attributes operation, and term enforcement management. For
example, the auctioneer party-contract consists of three fol-
lowing parts.

Case 1.1 Member Variables. Each individual party-contract
will record the following attributes: account address, member
attributes, and term’s execution records. The account address,
used as unique identity, refers to the blockchain address cor-
responding to the account. The member attribute is a set of

attributes defined in the SPESC contract. The term’s execution
records is the journal that meet generation rules: for each term
t, the record is formal defined as

Record ::¼ f< is � t � Done; � t � Time > g;

where � t � represents the action name of term t, and the
variable name starts with an underline to distinguish it
from user-defined variables. For example, in the action
StartBidding corresponding to term no1, two variables will
be generated according to the above rules. Moreover,
isStartBiddingDone is used to record whether the execu-
tion of term t is completed, and StartBiddingTime records
the execution time of term t.

In Fig. 8, we show an example of auctioneer’s attributes
derived from the SPESC-based auction contract. Although the
auctioneer does not have attributes in the SPESC contract,
there are two related terms and actions, StartBidding in term
no1 andCollectPayment in termno4. Thus, the SPESC transla-
tor follows the above-mentioned generation rules to generate
party’s attributes for each term, e.g., isStartBiddingDone
and StartBiddingTime for StartBidding in term no1. In addi-
tion, the SPESC translator defines the variable auctioneer
Address to record the auctioneer address.

Case 1.2 Personnel Management. According to parties who
are groups or individuals, corresponding personnel man-
agement methods should be generated. Personnel manage-
ment including Register, Delete and Query is relatively

Fig. 6. Correspondence between SPESC and the generated contract class.

Fig. 7. The structure of individual and group party-contracts. Fig. 8. Auctioneer’s attributes in Solidity.

CHEN ETAL.: SPESC-TRANSLATOR: TOWARDS AUTOMATICALLY SMART LEGALCONTRACTCONVERSION FOR BLOCKCHAIN-BASED... 3069

Authorized licensed use limited to: Univ of Science and Tech Beijing. Downloaded on November 09,2022 at 08:35:58 UTC from IEEE Xplore. Restrictions apply.

simple in comparison with group personnel management.
In the auction, personnel management of auctioneer just
involves registering and querying the auctioneer’s address,
as shown in Fig. 9.

Case 1.3 Term Enforcement Management. For each term
associated with contracting party, term enforcement man-
agement contains some term-related functions that allow
the programmer to handle the terms and provides the
appropriate feedback. The code generated from term no1 is
shown in Fig. 10.

In this example of StartBidding, the SPESC translator
generates a record function StartBiddingDone after term
enforcement and a time query function StartBiddingTime
for term completion. Through these two functions, the auc-
tioneer’s attributes have been automatically specified.

6.2.2 Case 2: Group Party-Contract for the Bidders

The group party-contract has more complex structure than
individual one in order to support dynamic parties. As the
right subfigure of Fig. 7, the group party-contract also
includes rich functions for personnel management (seeArray
and Mapping structure) and various functions for record
query (see All, Some, and This query in terms enforcement
management) in addition to the contents of individual party-
contract. The specific generation rules are as follows.

Case 2.1 Personnel Management. In order to deal with a
group of contracting parties, the array structure is adopted
to store the parties’ information in a group-oriented con-
tract. Meanwhile, a mapping table from account addresses
to array coordinates is used to facilitate query on the indi-
vidual information. Besides, as shown in Fig. 7, the party’s
attributes recorded in a structure that is the same as the
member attributes of individual party-contract.

In Fig. 11, we show how to use the mapping table and
array to manage a group of dynamic contracting parties.
First, assume a new party individual PB be appended into
the contract, the Add operation in the ‘Personnel Man-
agement’ will perform the following steps: A.1) insert the
individual information PB into the last of array which has
the coordinate N ; and A.2) record the coordinate N on the
mapping table with hash index of individual address
AddressB, where the mapping table includes a pair of

address hash and array coordinate. The code of add opera-
tion is shown in Fig. 12, where biddersEntity and userlist
represent the array and the mapping table, respectively. An
additional operation contains is generated to check whether
a given account is in the mapping table.

Next, we consider the Delete operation for revoking an
individual PA from the group of parties. After querying its
array coordinate K according to AddressA, the operation
will proceed as follows: B.1) replace the content in the corre-
sponding unit (Kth) of array with the individual PB in the
last (Nth) of array, and clear the Nth unit; B.2) replace the
array coordinates recorded in the mapping table for PB

with the new coordinate K; and B.3) replace the coordinate
of the PA with the initial value 0. If the deleted individual is
the last in the array, the operation directly sets the corre-
sponding unit of the array and the mapping table to empty.

Case 2.2 Term Enforcement Management. The other differ-
ence between group party-contract and individual party-
contract is term enforcement management, where the for-
mer involves some new functions corresponding to the
terms’ states besides the Record functions included in the
latter. Exactly, these new functions consist of three queries:

� ‘All’ query: which outputs the completion state of the
last individual for a certain term, e.g., after all voters
did vote;

� ‘First’ query: which outputs the completion state of
the first individual for a term, e.g., before first buyers
did pay;

� ‘This’ query: which outputs the completion state of
the current individual for a term, e.g., after this bid-
ders did bid.

For example, these functions can provide the query for
the recorded time when the terms are completed by the first,
last, or current person, respectively.

6.3 Main-Contract Generation

The generated main-contract is divided into two parts. The
first involves the definition and initialization of contract

Fig. 9. Auctioneer personnel management in Solidity.

Fig. 10. Auctioneer’s term execution management.

Fig. 11. Mapping table and array for group-oriented contracting party
management.

Fig. 12. Bidders’ personnel management.

3070 IEEE TRANSACTIONS ON SERVICES COMPUTING, VOL. 15, NO. 5, SEPTEMBER/OCTOBER 2022

Authorized licensed use limited to: Univ of Science and Tech Beijing. Downloaded on November 09,2022 at 08:35:58 UTC from IEEE Xplore. Restrictions apply.

attributes and parties. The contract attributes refer to the
information defined by programmer in the original SPESC
contract, and parties are some instances of party-contract
classes as mentioned above. Among them, the default access
permission of generated variables is public. Such that, the
public variables in Solidity will be accessed directly through
the contract to obtain the contract state. For example, a bid-
der can query highestBidder in the contract to obtain the
address of the highest bidder, so as to determine whether
he/she has won the bid.

The second part is used to deal with the terms. Consider-
ing each term in the SPESC contract represents an action, a
function corresponding to the term (called term-derived func-
tion) would be generated in Solidity. This kind of functions
includes three parts: execution condition, function body and
result detection. If the detection of the execution condition
fails, the program will explicitly throw an exception to han-
dle it at runtime in the process of execution condition and
result detection.

6.3.1 Restriction Detection in Term Implementation

In accordance with the syntax of the SPESC terms, there are
three types of restrictions on the implementation of terms:

� Participant restriction: which is used to stipulate
which of parties can perform the current term;

� Conditional restriction: which refers to the precondi-
tions defined in the SPESC terms;

� Deposit restriction: which refers to a limit on the
amount of cash that be deposited into the contract
when calling this function, and is embodied in the
deposit statement in the transaction operation.

To detect the condition, Solidity has three functions,
require, assert, and revert, designed for checking state
changes to prevent potential errors [21]. The function
require can be used to guarantees validity of conditions,
such as inputs, contract state variables, and return values,
that cannot be detected before execution. If the detection
fails, the Ethereum platform will return the remaining gas.
The function assert can be applied for internal errors or ana-
lyzing invariants. Once this kind of detection fails, it means
that there is an error in program itself and the code should
be fixed. Finally, the function revert can be used to flag an
error and revert the current call.

In the function translated from the SPESC term, the
detection failure of these three restrictions is normal pro-
gram state, so that the exception-throwing function, require
or revert, may be used to return the remaining cash and roll
back to a previous state in the main-contract. Furthermore,
the SPESC-Translator will generate the detection sentence
of corresponding execution results according to the prede-
fined PostCondition. These sentences will assist the pro-
grammer to write the function body and check run-time
errors in the program. Once the detection fails, it means that
there is an error in the program, so that the function assert
can be used to request for manual assistance and legal
action for breach of contract.

Except for restriction detection, the function body can be
acquired from PostCondition of term by the SPESC-Transla-
tor, and the post-condition will be considered as a primary
reference for programmers. Therefore, the programmer only

needs to write the function body and verify the correctness of
the execution for given inputs and results.

6.3.2 Example for Generating Term-Derived Function

Let us continue to take the auction contract as an example
for illustrating the implementation of term-derived func-
tions. In this example, the program logic is so simple that all
the programmer need to do is to append the codes for parti-
es’ registration and check the logic of the codes after the
main-contract is automatically generated by the SPESC-
Translator.

In Fig. 13, we show how to convert term no2 into the
code in Solidity, where the former is written in the left side
(A) and the latter is in the right side (B). By using arrows in
this example, we describe the conversion relationships
between SPESC and Solidity. These relationships can be
described as follows:

1) Generate the function Bid that has same name as the
action Bid in the first line of A subgraph (denoted as
A1). If it is detected that A contains an asset transac-
tion statement, e.g., the ‘while’ sentence in A4, the
keyword ‘payable’ must be appended to B1 in order
to indicate that the function can receive or send
Ether;

2) Accomplish the participant restriction for the ‘bidders’
defined in A1. In this example, according to actual
intention of the contract, the one who deposit the
cash must be the bidder. Therefore, it is necessary to
remove the participant restriction by the SPESC
translator and manually add the party registration
code (see B2-3): if the caller is not a bidder, he will be
registered as a bidder;

3) Accomplish the conditional restriction for the ‘when’
sentence according to the preconditions (A2-3). Two
require-type functions are generated to guarantee
the validity of the following conditions: one is that
the bid time would be after the auctioneer starts the
bidding and before the end time of auction (A4), and
the other is that the bid would be greater than the
highest price (A5).

4) Accomplish the function body corresponding to the
‘where’ sentence. According to the post-conditions
(A5-7), three lines of execution code (B7-9) are auto-
matically generated to record the runtime states,
including the highest price, highest bidder and high-
est bidder’s fund pool, which are used as the pro-
grammer’s reference;

5) Accomplish the result detection according to post-
condition (A5-7). An assert-type assertion (B10-11)
is generated to check the correctness of the highest
price, highest bidder and highest bidder’s fund
pool, as mentioned above. Moreover, the keyword
‘Origin’ is used in A7 to indicate that the variable
amount should be the value before the function is
executed, such that the code in B6 is appended
to record this value before the function body is
executed.

Note that the order of post-conditions has an impact on
the generation of code. For example, we replace the post-
condition in A5-7 with the following statement:

CHEN ETAL.: SPESC-TRANSLATOR: TOWARDS AUTOMATICALLY SMART LEGALCONTRACTCONVERSION FOR BLOCKCHAIN-BASED... 3071

Authorized licensed use limited to: Univ of Science and Tech Beijing. Downloaded on November 09,2022 at 08:35:58 UTC from IEEE Xplore. Restrictions apply.

1: where this bidder::amount =

2: this bidder::Origin amount + highest

Price and

3: highestPrice = value and highestBidder =

this bidder.

The new term have the same meaning as the old one from
SPESC, but the generated program will incorrectly add the
last highest price to the bidder’s funding pool. Fortunately,
the assertion can successfully detect this kind of error to
remind that the programmer manually adjusts the sequence
of statements. In addition, the complete target code of auction
contract in Solidity is listed in the appendix, which can be
found on the Computer Society Digital Library at http://doi.
ieeecomputersociety.org/10.1109/TSC.2021.3077291.

7 EXPERIMENTAL RESULTS

In this section, a series of experiments are carried out to ver-
ify the validity of the auction program generated from the
SPESC contract to the Solidity code. The experimental plat-
form and results are described as below.

7.1 Auction Contract’s Experiments and Results

The SPESC’s syntax and translator are implemented by using
Xtext, where Xtext is a powerful tool for development of
grammar language. Meanwhile, the source code of SPESC’s
syntax is more than 400 lines, including about 70 syntax ele-
ments and 64 syntax rules. The SPESC translator has more
than 1000 lines of source code, which are encapsulated into a
plugin. Our auction contract in the SPESC language is written
through the plugin. The SPESC translator can automatically
develop more than 80 percent of the target code in Solidity.
Our experiments are carried out on these converted Solidity
codes after a simple revision of codes.

The initial experimental platform runs on three virtual
machines with Windows 7 operation system. Each virtual
machine is allocated with 2.80GHz, 4G RAM and dual-core
Intel CPUs, and is connected to the Ethereum network
through NAT. Thus, the three virtual machines can access
each other. In this platform, three virtual machines were
deployed as three blockchain nodes [22], including an auc-
tioneer node A and two bidder nodes, B1 and B2, respec-
tively. As shown in Table 2 The initial balance of the
account is 100 eth for each of three nodes.

The Solidity code need to be compiled into machine code
which runs in the Ethereum virtual machine. We adopt the
Ethereum’s Remix compiler to compile our auction contract,
where the Remix is a Solidity IDE that contains functions for
writing contracts, testing, debugging, and deploying. The
blockchain uses the Ethereum platform. The Ethereum Geth
client (1.7.0) is used to take part in the ethereum network.

The contract testing is an interactive process among three
nodes. NodeA performs the deployment and initialization as:

1) After A deploys the contract’s target code into block-
chain, Remix exports contract’s binary interface. And
then, the auctioneer is registered by A, so that only A
is admitted to invoke the function StartBidding.

2) A executes the StartBidding to start the auction by
setting the reserve price to 2 eth and the end time to
5 minutes after execution (The time in Ethereum is
measured on the current block time that defines
when the block was generated. The Ethereum’s aver-
age block time is about 15s, so there may be a little
deviation between the measured time and the real
time).

After this, the functions, including StartBidding and
CollectPayment, cannot be executed before the end time.
Any bidder can execute the function Bid to make a formal
offer, but if the offer is less than 2 eth, the execution fails.
Next, two nodes, B1 and B2, implements the bid process as
follows:

1) B1 executes the function Bid and offers 3 eth to par-
ticipate in the auction. At this time, the highest bid-
der is B1, the highest bid becomes 3 eth, and B1’s
fund pool has 3 eth. The contract situation is the
same as before.

2) B2 executes Bid and offers 4 eth. The highest bidder
is B2, the highest price becomes 4 eth, and B2’s fund
pool has 4 eth. As a loser, B1 is allowed to withdraw
bid from pool.

3) B1 executes WithdrawBid to take back the failed bid,
then executes Bid again and offers 5 eth. The highest
bidder is B1, B1’s fund pool has 5 eth, and B2’s fund
pool has 4 eth.

After the above steps, wait until the auction time is over. At
last, A executes CollectPayment to collect the highest offer 5
eth, andB2 executesWithdrawBid to withdraw the failed bid
(in no particular order). So, there is no funds in contract.

Fig. 13. The conversion relationship between the term no2 in SPESC and the term-derived function in Solidity.

3072 IEEE TRANSACTIONS ON SERVICES COMPUTING, VOL. 15, NO. 5, SEPTEMBER/OCTOBER 2022

Authorized licensed use limited to: Univ of Science and Tech Beijing. Downloaded on November 09,2022 at 08:35:58 UTC from IEEE Xplore. Restrictions apply.

http://doi.ieeecomputersociety.org/10.1109/TSC.2021.3077291
http://doi.ieeecomputersociety.org/10.1109/TSC.2021.3077291

In Table 1, we show the results of the above experimental
process in the Ethereum blockchain, including the states of
each steps. The balance of accounts and the gas consump-
tion during execution are also shown in the table. Here, the
gas consumption of execution refers to how much gas con-
sumed for executing the smart contract program in the
Ethereum virtual machine, that is considered as the actual
computational overheads performed by the program. The
gas consumption of storage refers to the cost for uploading
the variables to the blockchain. According to the table, the
experimental results are consistent with the expected values
of bids and account balances as mentioned above. This also
shows that it is effective for the contract conversion from
SPESC to Solidity.

7.2 SPESC-Translator Experiments and Results

We next conduct experiments to test the conversion effi-
ciency and reliability of SPESC-Translator. Our experiments
were designed for developing and translating four SPESC
contract instances, including loan contract, auction contract,
house-leasing contract, and purchase contract. We test the
converted smart contracts in Ethereum Rinkeby testnet,
which gives developers a chance to freely test and debug
the contracts before deployment using real eths in Ethereum
mainnet. The experiment results show that SPESC-Transla-
tor is a well-behaved and effective tool in Ethereum testnet.

In our experiments, the above contracts are first con-
verted into executable contracting programs in Solidity by
the translator. Next, a small amount of codes might be man-
ually appended or modified so that four experimental con-
tracts can be compiled and run on the Ethereum testing
network. For simplicity, LLOC is denoted as the number of
Logical Lines of Codes. In order to measure the perfor-
mance of the SPESC-Translator, we define the following
two concepts. Conversion Rate (CR) represents the percent-
age of automatically generated lines in the total lines of con-
tract codes, i.e.,

CR ¼ auto-generated LLOC

total LLOC
� 100%: (1)

Production Ratio (PR) indicates the ratio of the converted
Solidity codes to the original SPESC codes, i.e.,

PR ¼ total LLOC

SPESC LLOC
� 100%: (2)

The higher the conversion rate is, the less lines of codes will
be modified. On the other hand, the higher the production

ratio is, the higher the efficiency of the SPESC-Translator is,
and the more labor will be saved.

Among four tested SPESC contracts, the auction contract
is mentioned as above, and three remaining contracts are
described as follows:

1) Loan contract, refers to a contract where a lender
delivers a certain amount of funds to a borrower,
and the latter returns the same amount of funds
within a certain period of time and pays interests to
the lender. There are 6 terms in the contract that con-
sists of two aspects: 1) the borrower shall submit a
loan application stating the amount he/she wants to
borrow, and 2) the lender may deposit funds into the
contract account until the target of loan is reached.
Before borrowing, the contract requires that the bor-
rower must confirm the loan information and check
the historical loan records, and then calculate the
corresponding interests. Meanwhile, the contract
asserts that the borrower pays off the loan amount
before the loan date comes.

2) House-leasing contract, takes assets as the transaction
subject between lessor and lessee. There are 7 terms
in the contract, including two aspects: 1) the lessor
can register the house after depositing the rental
deposit, and 2) the lessee can keep the right to use
the house during the leasing period after depositing
the rent. After confirming the leased house, the con-
tract requires that the lessee shall pay the rent, and
the lessor must transfer the right to the lessee within
one week. Meanwhile, the contract stipulates the
pre-condition for the lessor to charge the rent paid
by the lessee, and the post-condition for both parties
to get their deposits back after the house inspection.

3) Purchase contract, transfers the ownership of goods
from sellers to buyers through logistics company.
There are 10 terms in the contract, including three
parts: 1) once the goods are confirmed, seller will
sign a contract and take twice the contracting price

TABLE 1
The Account States of Each Steps in the Contract Experiment

Participant Function Params balance/eth total gas execution gas store gas

Auctioneer A Depolay A:99.9; B1:100.0; B2:100:0 2124040 1577980 546060
Auctioneer A StartBidding reserve:2eth; time:300s A:99.9; B1:100.0; B2:100:0 110737 89017 21720
Bidder B1 Bid deposit:3eth A:99.9; B1:96.9; B2:100:0 156552 135280 21272
Bidder B2 Bid deposit:4eth A:99.9; B1: 96.9; B2:95.9 141552 120280 21272
Bidder B1 WithdrawBid A:99.9; B1:100.0; B2:100:0 44361 38089 6272
Bidder B1 Bid deposit:5eth A:99.9; B1:94.9; B2:95:9 84480 63208 21272
Auctioneer A CollectPayment A:104.9; B1:94.9; B2:95:9 81861 60589 21272
Bidder B2 WithdrawBid A:104.9; B1:94.9; B2:99:9 44361 38089 6272

TABLE 2
The Account Statement for Three Nodes

CHEN ETAL.: SPESC-TRANSLATOR: TOWARDS AUTOMATICALLY SMART LEGALCONTRACTCONVERSION FOR BLOCKCHAIN-BASED... 3073

Authorized licensed use limited to: Univ of Science and Tech Beijing. Downloaded on November 09,2022 at 08:35:58 UTC from IEEE Xplore. Restrictions apply.

as the delivery price, 2) the goods are sent to buyer
through logistics when the buyer purchases the
goods, and 3) only when the logistics successfully
delivers the goods to the buyer can the seller get
back the payment. According to relevant laws, the
contract requires that buyer can apply for compensa-
tion if goods do not arrive within 10 days after pay-
ment, or the seller can automatically confirm the
arrival if the buyer does not confirm or apply for
refund within 7 days after arrival.

As shown in Table 3, the number of SPESC lines are 55,
41, 74 and 60 for four experimental contracts, respectively.
After converting the executable Solidity programs, the total
number of Solidity code lines are 225, 309, 344 and 418,
respectively. The number of Solidity code lines manually
modified are 28, 34, 67 and 77, respectively. Furthermore,
the number of remaining lines automatically generated into
Solidity codes are 197, 275, 267 and 341, respectively. There-
fore, we can compute the conversion rates CR as 87.56,
89.00, 80.52 and 81.58 percent, and the production ratio PR
as 409.09, 753.66, 484.51 and 696.67 percent, respectively.

As shown in Fig. 14, we describe the relationship of logi-
cal lines between SPESC and Solidity codes. In the figure,
three colors are used to describe the number of code lines in
three different states of contracts. Exactly, the green part
represents the number of SPESC contract code lines, the
blue part represents the number of Solidity code lines that
need to be manually modified, and the red part represents
the number of lines that is automatically converted into
Solidity codes by translator.

It is easy to find that the number of SPESC code lines is
much less than that of Solidity, so it indicates that SPESC is
highly expressive and reduces labor intensity. Through our
experimental observation, the modified codes mainly
include two aspects: 1) type declaration of variables need be
manually appended into Solidity codes since SPESC does

not declare types of few variables, 2) low-level functionali-
ties, e.g., contains and underflow, need be appended into
Solidity codes since SPESC does not support these special
functions in Solidity. Meanwhile, the fact, that the number
of modified Solidity code lines is far less than that of auto-
generated lines, indicates that the proportion of human
involvement is relatively low, so as to reduce the difficulty
of developing smart contracts.

We further turn our attention to conversion rate and pro-
duction ration of the SPESC-Translator in Fig. 15. The four
hollow circular points on the blue broken line represent the
conversion rates of the SPESC-Translator corresponding to
the four SPESC contracts, where the conversion rates range
from 80 to 90 percent. And, the blue dotted line indicates
the average value of the four instance programs, which is
84.67 percent. In addition, the solid square dots on the
magenta broken line indicate the production ratios of the
converted Solidity code lines to the SPESC code lines, where
the production ratios range from 4 to 8 times. And the
magenta dotted line indicates the average ratio of the four
instance programs, which is 5.86 times.

7.3 Contracts’ Security Experiments and Results

We assess the security of converted Solidity contracts for
verifying the validity of SPESC-Translator. Several vulnera-
bility detection tools are selected to detect the vulnerability
of Solidity contracts after investigating the existing relevant
researches. The selected testing tools include Madmax [23],
Mythril [24], Oyente [19] and Smartcheck [25]. Meanwhile,
the test environments, i.e., Docker, Web sites and virtual
machine, corresponding to testing tools are deployed to test
the four contracts.

The specific test environments, functions, objectives and
results are shown in Table 4. Among our tests, Mythril is a
security analysis tool that uses symbolic execution, SMT

TABLE 3
Efficiency and Completeness of SPESC-Translator

Contract name SPESC Solidity D

LLOC total LLOC modified LLOC auto-generated LLOC CR PR

Loan contract 55 225 28 197 87.56% 409.09%
Auction contract 41 309 34 275 89.00% 753.66%
House-leasing contract 71 344 67 267 80.52% 484.51%
Purchase contract 60 418 77 341 81.58% 696.67%

Average 56.75 324 51.5 270 84.67% 585.98%

Fig. 14. Logical lines of SPESC and Solidity codes. Fig. 15. Conversion rate and production ratio of translator.

3074 IEEE TRANSACTIONS ON SERVICES COMPUTING, VOL. 15, NO. 5, SEPTEMBER/OCTOBER 2022

Authorized licensed use limited to: Univ of Science and Tech Beijing. Downloaded on November 09,2022 at 08:35:58 UTC from IEEE Xplore. Restrictions apply.

solving and taint analysis to detect a variety of vulnerabil-
ities about 37 types for smart contracts. As a result, Mythril
detected SWC-101, SWC-105 and SWC-116 vulnerabilities
in the simple auction contract according to Smart contract
Weakness Classification (SWC), and only SWC-101 vulnera-
bility in the other three contracts. On SWC website (ttps://
swcregistry.io/), it was found that SWC-101 is integer over-
flow and underflow, SWC-105 is unprotected ether with-
draw, and SWC-116 is block values as a proxy for time.

The other tools, including the Madmax, Oyente, and
Smartcheck, basically cover the main vulnerability detec-
tions for smart contracts, but no abnormality was found in
the test results of these tools. The latest version of SPESC-
Translator has fixed the above vulnerabilities in the con-
verted Solidity codes. In summary, the above experimental
results show that the SPESC-Translator is reliable and effi-
cient in real-world scenarios, and verifies the security and
effectiveness of the translator’s functions.

8 CONCLUSION

A series of generation rules are proposed to realize conversion
from the SPESC contract to the Solidity code. Based on these
rules, it makes possible for non-programmers to write more
effective law-oriented smart contracts. This conversion pro-
cess not only automatically generates personnelmanagement,
data structure and function declaration, but also provides
convenient query interfaces. Users do not need to consider
the storage structure of parties and accounts, so it increases
the applicability despite slightly increasing the computational
overheads. There are syntax distinctions in different smart
contract languages, but the working structure and mode are
not much different among the converted codes in the same
target language. Therefore, our result is of useful guideline
for the generation of smart legal contracts.

ACKNOWLEDGMENTS

Thisworkwas supported in part by theNational Key Technol-
ogies R&D Programs of China under Grant 2018YFB1402702
and in part by the National Natural Science Foundation of
China underGrant 61972032.

REFERENCES

[1] C. Linnhoff-Popien, R. Schneider, and M. Zaddach, Digital Market-
places Unleashed. Berlin, Germany: Springer, 2018.

[2] I. Karamitsos, M. Papadaki, and N. B. Al Barghuthi, “Design of
the blockchain smart contract: A use case for real estate,” J. Inf.
Secur., vol. 9, no. 3, p. 177, 2018.

[3] F. Idelberger, G. Governatori, R. Riveret, andG. Sartor, “Evaluation
of logic-based smart contracts for blockchain systems,” in Proc. Int.
Symp. Rules RuleMarkup Lang. SemanticWeb, 2016, pp. 167–183.

[4] C. K. Frantz and M. Nowostawski, “From institutions to code:
Towards automated generation of smart contracts,” in Proc. IEEE
1st Int. Workshops Found. Appl. Self* Syst., 2016, pp. 210–215.

[5] F. Schrans, S. Eisenbach, and S. Drossopoulou, “Writing safe
smart contracts in flint,” in Proc. Conf. Companion 2nd Int. Conf.
Art, Sci. Eng. Program., 2018, pp. 218–219.

[6] M. Coblenz, “Obsidian: A safer blockchain programming
language,” in Proc. IEEE/ACM 39th Int. Conf. Softw. Eng. Compan-
ion, 2017, pp. 97–99.

[7] I. Sergey, A. Kumar, and A. Hobor, “Scilla: A smart contract inter-
mediate-level language,” 2018, arXiv: 1801.00687.

[8] R. O’Connor, “Simplicity: A new language for blockchains,” in
Proc. Workshop Program. Lang. Anal. Secur., 2017, pp. 107–120.

[9] E. Regnath and S. Steinhorst, “SmaCoNat: Smart contracts in natural
language,” in Proc. ForumSpecification Des. Lang., 2018, pp. 5–16.

[10] O. Choudhury, N. Rudolph, I. Sylla, N. Fairoza, and A. Das,
“Auto-generation of smart contracts from domain-specific ontolo-
gies and semantic rules,” in Proc. IEEE Int. Conf. Internet Things
IEEE Green Comput. Commun. IEEE Cyber, Phys. Social Comput.
IEEE Smart Data, 2018, pp. 963–970.

[11] A. Biryukov, D. Khovratovich, and S. Tikhomirov, “Findel: Secure
derivative contracts for ethereum,” in Proc. Int. Conf. Financial
Cryptography Data Secur., 2017, pp. 453–467.

[12] X. He, B. Qin, Y. Zhu, X. Chen, and Y. Liu, “Spesc: A specification
language for smart contracts,” in Proc. 42nd Annu. Comput. Softw.
Appl. Conf., 2018, pp. 132–137.

[13] M. Hamdaqa, L. A. P. Metz, and I. Qasse, “iContractML: A
domain-specific language for modeling and deploying smart con-
tracts onto multiple blockchain platforms,” in Proc. 12th Syst.
Anal. Modelling Conf., 2020, pp. 34–43.

[14] M. W€ohrer and U. Zdun, “Domain specific language for smart
contract development,” in Proc. IEEE Int. Conf. Blockchain Crypto-
currency, 2020, pp. 1–9.

[15] K. Kasprzyk, “The concept of smart contracts from the legal
perspective,” Rev. Comp. Law, vol. 34, no. 3, pp. 101–118, 2018.

[16] J. Goldenfein and A. Leiter, “Legal engineering on the blockchain:
‘Smart contracts’ as legal conduct,” Law Critique, vol. 29, no. 2,
pp. 141–149, 2018.

[17] J. G. Allen, “Wrapped and stacked: ‘Smart contracts’ and the inter-
action of natural and formal language,” Eur. Rev. Contract Law,
vol. 14, no. 4, pp. 307–343, 2018.

[18] S. S. Gomes, “Smart contracts: Legal frontiers and insertion into
the creative economy,” Braz. J. Oper. Prod. Manage., vol. 15, no. 3,
pp. 376–385, 2018.

TABLE 4
Testing Results of Four Converted Solidity Contracts Under Several Vulnerability Detection Tools

Environment Function Objective Result

Madmax [23] Arch Linux, Intel(R)
Core(TM) i5-8250U
CPU @ 1.60GHz x 8

Detect Dao attacks and other potential threats EVM bytecode No vulnerability detected

Mythril [24] Docker Effectively detect the security vulnerabilities about
37 types in Smart contract Weakness Classification
(SWC), and provide protection for the security of
smart contract

.sol file There are SWC-101, SWC-116, and
SWC-105 vulnerabilities in the
simple auction contract and only
SWC-101 vulnerability in the other
three smart contracts.

Oyente [19] Docker Integer underflow and overflow, parity multisig
bug 2, callstack depth attack vulnerability,
Transaction-Ordering Dependence (TOD),
timestamp dependency, re-entrancy vulnerability

.sol file No abnormality detected

Smartcheck [25] Web sites and pages Check contract code syntax problems and
vulnerabilities

.sol file Pass-test

CHEN ETAL.: SPESC-TRANSLATOR: TOWARDS AUTOMATICALLY SMART LEGALCONTRACTCONVERSION FOR BLOCKCHAIN-BASED... 3075

Authorized licensed use limited to: Univ of Science and Tech Beijing. Downloaded on November 09,2022 at 08:35:58 UTC from IEEE Xplore. Restrictions apply.

[19] L. Luu, D.-H. Chu, H. Olickel, P. Saxena, and A. Hobor, “Making
smart contracts smarter,” in Proc. ACM SIGSAC Conf. Comput.
Commun. Secur., 2016, pp. 254–269.

[20] N. Atzei, M. Bartoletti, and T. Cimoli, “A survey of attacks on
ethereum smart contracts (sok),” in Proc. Int. Conf. Princ. Secur.
Trust, 2017, pp. 164–186.

[21] K. Bhargavan et al., “Formal verification of smart contracts: Short
paper,” in Proc. ACM Workshop Program. Lang. Anal. Secur., 2016,
pp. 91–96.

[22] R. M. Parizi, A. Dehghantanha, and A. Singh, “Smart contract pro-
gramming languages on blockchains: An empirical evaluation of
usability and security,” in Proc. Int. Conf. Blockchain, 2018, pp. 75–91.

[23] N. Grech, M. Kong, A. Jurisevic, L. Brent, B. Scholz, and Y. Smar-
agdakis, “Madmax: Surviving out-of-gas conditions in ethereum
smart contracts,” in Proc. ACM Program. Lang., 2018, pp. 1–27.

[24] MythX, “Mythril classic: Security analysis tool for ethereum smart
contracts,” 2018. Accessed: Sep. 2019. [Online]. Available: https://
github.com/ConsenSys/mythril-classic

[25] S. Tikhomirov, E. Voskresenskaya, I. Ivanitskiy, R. Takhaviev,
E. Marchenko, and Y. Alexandrov, “Smartcheck: Static analysis of
ethereum smart contracts,” in Proc. 1st Int. Workshop Emerg. Trends
Softw. Eng. Blockchain, 2018, pp. 9–16.

E Chen received the BS degree from the Depart-
ment of School of Mathematics and Physics, Uni-
versity of Science and Technology Beijing, China.
She is currently working toward the PhD degree
with the Department of School of Computer and
Communication Engineering, University of Sci-
ence and Technology Beijing. Her research inter-
ests include attribute based system, blockchain,
smart contract, and lattice cryptography.

Bohan Qin received the BE degree from the
Department of School of Computer and Commu-
nication Engineering, University of Science and
Technology Beijing, China. He is currently work-
ing toward the MASc degree with the Department
of School of Computer and Communication Engi-
neering, University of Science and Technology
Beijing. His research interests include blockchain
and smart contract.

Yan Zhu (Member, IEEE) was an associate pro-
fessor of computer science with the Institute of
Computer Science and Technology, Peking Uni-
versity, China, from 2007 to 2013. From 2008 to
2009, he was a visiting scholar with Arizona State
University and in 2012, with the University of
Michigan-Dearborn. He is currently a professor
with University of Science and Technology Bei-
jing, China. His research interests include cryp-
tography and security.

Weijing Song received the BE degree from the
Department of School of Computer and Commu-
nication Engineering, University of Science and
Technology Beijing, China. She is currently work-
ing toward the MASc degree with the Department
of School of Computer and Communication Engi-
neering, University of Science and Technology
Beijing. Her research interests include blockchain
and smart contract.

Shengdian Wang received the BE degree from
the Department of School of Computer and Com-
munication Engineering, University of Science
and Technology Beijing, China. He is currently
working toward the MASc degree with the
Department of School of Computer and Commu-
nication Engineering, University of Science and
Technology Beijing. His research interests
include blockchain and smart contract.

Cheng-Chung William Chu (Senior Member,
IEEE) received the MS and PhD degrees in com-
puter science from Northwestern University,
Evanston, IL, USA, in 1987 and 1989, respec-
tively. He is currently a distinguished professor
with the Department of Computer Science, Tung-
hai University, Taichung, Taiwan. From 2004 to
2016, he was the director of Software Engineer-
ing and Technologies Center and from 2004 to
2007, he was the dean of Research and Develop-
ment office. He has authored or coauthored more

than 100 referred papers and book chapters, and participated in many
international activities, including organizing conferences, was with the
steering committee for the IEEE Computer Society Computers, Soft-
ware, and Applications Conference, Asia-Pacific Software Engineering
Conference, IEEE Quality Reliability Security, International Symposium
on System and Software Reliability, and the program committee of more
than 70 conferences. He is an associate editor for the IEEE Transac-
tions On Reliability, Journal of Software Maintenance and Evolution, and
International Journal of Advancements in Computing Technology.

Stephen S. Yau (Fellow, IEEE) is currently a pro-
fessor with Arizona State University (ASU), USA.
He was the chair of the Department of Computer
Science and Engineering, ASU. He was on the
faculties of Northwestern University, Evanston,
Illinois, and the University of Florida, Gainesville.
He was the president of the IEEE Computer Soci-
ety, and was on the board of directors of the IEEE
and of Computing Research Association. He was
the editor-in-chief of the IEEE Computer maga-
zine, organizing committee chair of 1989 World

Computer Congress sponsored by IFIP, and the chair of COMPSAC
1977 and its steering committee chair in subsequent years sponsored by
the IEEE Computer Society. He was the general chair of 2018 IEEE
World Congress on Services, and an honorary co-chair of 2017 IEEE
Smart World Congress. He was the recipient of the Tsutomu Kanai
Award and Richard E. Merwin Award of the IEEE Computer Society, and
Outstanding Contributions Award of Chinese Computer Federation. He
is a fellow of the AAAS and IEEE.

" For more information on this or any other computing topic,
please visit our Digital Library at www.computer.org/csdl.

3076 IEEE TRANSACTIONS ON SERVICES COMPUTING, VOL. 15, NO. 5, SEPTEMBER/OCTOBER 2022

Authorized licensed use limited to: Univ of Science and Tech Beijing. Downloaded on November 09,2022 at 08:35:58 UTC from IEEE Xplore. Restrictions apply.

https://github.com/ConsenSys/mythril-classic
https://github.com/ConsenSys/mythril-classic

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Algerian
 /Arial-Black
 /Arial-BlackItalic
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BaskOldFace
 /Batang
 /Bauhaus93
 /BellMT
 /BellMTBold
 /BellMTItalic
 /BerlinSansFB-Bold
 /BerlinSansFBDemi-Bold
 /BerlinSansFB-Reg
 /BernardMT-Condensed
 /BodoniMTPosterCompressed
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /BritannicBold
 /Broadway
 /BrushScriptMT
 /CalifornianFB-Bold
 /CalifornianFB-Italic
 /CalifornianFB-Reg
 /Centaur
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /Chiller-Regular
 /ColonnaMT
 /ComicSansMS
 /ComicSansMS-Bold
 /CooperBlack
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FootlightMTLight
 /FreestyleScript-Regular
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /HarlowSolid
 /Harrington
 /HighTowerText-Italic
 /HighTowerText-Reg
 /Impact
 /InformalRoman-Regular
 /Jokerman-Regular
 /JuiceITC-Regular
 /KristenITC-Regular
 /KuenstlerScript-Black
 /KuenstlerScript-Medium
 /KuenstlerScript-TwoBold
 /KunstlerScript
 /LatinWide
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaBright
 /LucidaBright-Demi
 /LucidaBright-DemiItalic
 /LucidaBright-Italic
 /LucidaCalligraphy-Italic
 /LucidaConsole
 /LucidaFax
 /LucidaFax-Demi
 /LucidaFax-DemiItalic
 /LucidaFax-Italic
 /LucidaHandwriting-Italic
 /LucidaSansUnicode
 /Magneto-Bold
 /MaturaMTScriptCapitals
 /MediciScriptLTStd
 /MicrosoftSansSerif
 /Mistral
 /Modern-Regular
 /MonotypeCorsiva
 /MS-Mincho
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /NiagaraEngraved-Reg
 /NiagaraSolid-Reg
 /NuptialScript
 /OldEnglishTextMT
 /Onyx
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Parchment-Regular
 /Playbill
 /PMingLiU
 /PoorRichard-Regular
 /Ravie
 /ShowcardGothic-Reg
 /SimSun
 /SnapITC-Regular
 /Stencil
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TempusSansITC
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanMTStd
 /TimesNewRomanMTStd-Bold
 /TimesNewRomanMTStd-BoldCond
 /TimesNewRomanMTStd-BoldIt
 /TimesNewRomanMTStd-Cond
 /TimesNewRomanMTStd-CondIt
 /TimesNewRomanMTStd-Italic
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Times-Roman
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /VinerHandITC
 /Vivaldii
 /VladimirScript
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZapfChanceryStd-Demi
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Suggested" settings for PDF Specification 4.0)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

