
IEEE INTERNET OF THINGS JOURNAL, VOL. 9, NO. 7, APRIL 1, 2022 5391

Policychain: A Decentralized Authorization Service
With Script-Driven Policy on Blockchain for

Internet of Things
E Chen , Yan Zhu , Zhiyuan Zhou, Shou-Yu Lee , Member, IEEE, W. Eric Wong , Senior Member, IEEE,

and William Cheng-Chung Chu, Senior Member, IEEE

Abstract—The decentralization mechanism provides
manufacturers and distributors with greater customization
and flexibility they need through Internet of Things (IoT)-based
industrial collaboration systems (IoT-ICS), but it has brought
forward security concerns about the shared data-processing
tasks and IoT-based access to services and resources. To address
them, we propose a practical blockchain solution to achieve
decentralized policy management and evaluation on attribute-
based access control (ABAC). By offloading the responsibility of
ABAC policy administration and decision making to blockchain
nodes, a blockchain-based access control framework, called
Policychain, is presented to ensure policy with high availability,
autonomy, and traceability. To deliver a solid design, we first
present a transaction-oriented policy expression scheme with a
well-defined syntax and semantics. The scheme can translate
ABAC policies into the blockchain transactions with JavaScript
object notation (JSON) syntax and script-based logical expres-
sion. We further realize a script-driven policy evaluation by
extending blockchain inherent scripting instructions to support
attribute acquisition of ABAC entities. Furthermore, we propose
a policy lifecycle management scheme from policy creation,
renovation, to revocation, in which policies are verified by
three validation principles at the transaction level. Finally, we
provide sophisticated analysis and experiments to show that
our framework is secure and practical for decentralized policy
management on ABAC in IoT-ICS.

Index Terms—Attribute-based access control (ABAC),
blockchain, Internet of Things (IoT), policy script, scripting
language, transaction-based policy.

Manuscript received April 27, 2021; revised June 11, 2021; accepted
August 26, 2021. Date of publication August 31, 2021; date of current ver-
sion March 24, 2022. This work was supported in part by the National
Key Technologies Research and Development Programs of China under
Grant 2018YFB1402702, and in part by the National Natural Science
Foundation of China under Grant 61972032. (Corresponding authors:
Yan Zhu; William Cheng-Chung Chu.)

E Chen, Yan Zhu, and Zhiyuan Zhou are with the Department of School
of Computer and Communication Engineering, University of Science and
Technology Beijing, Beijing 100083, China (e-mail: chene5546@163.com;
zhuyan@ustb.edu.cn; zhouzhiyuan999@icloud.com).

Shou-Yu Lee and W. Eric Wong are with the Department of Computer
Science, University of Texas at Dallas, Richardson, TX 75080 USA (e-mail:
sxl128630@utdallas.edu; ewong@utdallas.edu).

William Cheng-Chung Chu is with the Department of Computer Science,
Tunghai University, Taichung 40704, Taiwan (e-mail: cchu@thu.edu.tw).

Digital Object Identifier 10.1109/JIOT.2021.3109147

I. INTRODUCTION

AS GLOBAL markets continue to expand, more and more
companies are choosing a decentralized strategy to meet

the demands for customized products and decreased costs in
manufacturing industry. The advantages of decentralized man-
ufacturing include flexibility, better and timelier information,
more motivated managers and employees, and the ability
to take advantage of low labor costs in different areas [1].
Some new emerging technologies, such as blockchain and
Internet of Things (IoT), make it easier for companies to build
Industry 4.0 or industrial collaboration system (ICS) during
their decentralized manufacturing processes.

Blockchain is a decentralized ledger technology that stores
an immutable record of all transactions in a cryptographic way.
The combination of blockchain and IoT, called blockchain
IoT, not only offers various potential benefits, e.g., higher
trust, efficient data exchange, high-level security, and fault
tolerance, but also eliminates the need for a central location
to handle communication among IoT devices. According to
MarketsandMarkets Strategic Insights,1 the global blockchain
IoT market size is projected to grow from USD 258 million
in 2020 to USD 2 409 million by 2026, at a compound annual
growth rate (CAGR) of 45.1% during the forecast period.

The blockchain IoT technique is influencing manufacturing
from sourcing raw materials to delivering the final product. It
was clear that blockchain can increase transparency and effi-
ciency at every stage of the industrial value chain. However,
when the resource is shared through a decentralized blockchain
network, the security risks faced by the industrial system
have not been reduced due to a lack of continual monitor
and authentication. Such security risks include the intrusion
from compromised devices, data leakages, and hacker’s con-
trolling devices remotely. Therefore, it needs to reduce the
risks about the sharing of data-processing tasks and the unau-
thorized access to services and resources in IoT-based ICS (in
short IoT-ICS).

To ensure the security of resources (things, services, and
applications), access control is usually the first line of defense
to regulate who or what can view or use the resources in the
IoT-ICS. In view of the distinctive characteristics of IoT, e.g.,
dynamic positioning, heterogeneity, and widely geographical

1https://www.marketsandmarkets.com/Market-Reports/blockch-ain-iot-
market-168941858.html

2327-4662 c© 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.

Authorized licensed use limited to: Univ of Science and Tech Beijing. Downloaded on April 11,2022 at 12:07:37 UTC from IEEE Xplore. Restrictions apply.

https://orcid.org/0000-0003-0761-821X
https://orcid.org/0000-0002-9159-745X
https://orcid.org/0000-0003-2770-0106
https://orcid.org/0000-0002-1021-4753
https://orcid.org/0000-0001-7479-3486

5392 IEEE INTERNET OF THINGS JOURNAL, VOL. 9, NO. 7, APRIL 1, 2022

Fig. 1. IoT-ICS system with blockchain.

distribution, attributed-based access control (ABAC) [2] is
the most appropriate access control model for protecting the
shared resources in IoT-ICS with the outstanding features
of high flexibility, scalability, manageability, and powerful
expression ability. As a practical standard of ABAC for indus-
trial applications, extensible access control markup language
(XACML) has received increasing attention in recent years.
Using a rich expression to log various policies and rules,
XACML allows the resource owner (vendor or enterprise) to
impose access restrictions upon a specified workflow of evalu-
ation requests against policies. Meanwhile, XACML can help
requester to enforce the authorized operations and strictly limit
the behaviors on system resources [3].

More importantly, the ABAC/XACML model can be natu-
rally integrated into the blockchain IoT system. As an example
shown in Fig. 1, we describe an IoT-ICS with geographically
distributed devices and services, including human & project
management (H&PM), product design & development (PD&D),
mechatronics & manufacture (M&M), supply chain, and mar-
keting [4], as follows. First, project managers schedule and
publish the product tasks to PD&D. Second, PD&D organizes
product analysis and drawing design according to business pro-
cess, and then conducts planning review and process proposal,
and finally sends the design drawings to M&M, At last, M&M
purchases raw materials from suppliers, makes molds, tests
prototypes, produces and tests products, and then delivers the
products via the supply chain to sales and market, and finally
to users. To prevent unauthorized access, each of IoT devices
in the system embeds a blockchain node, called the authoriza-
tion service node (ASN), to manage the shared resources (e.g.,
design drawings, production tasks, product specifications, and
sales information) [5].

Due to the large volume of protected resources, we advice
that the access policy of resources, rather than the resources
themselves, is stored in the blockchain. By this way, all autho-
rized IoT devices can be allowed to access off-chain resources
through access authorization on the on-chain policy. Therefore,
through the ASN, the devices can share the resources by submit-
ting the ABAC-type policy of owned resources into blockchain,

or gain access authorization to protected resources by making
consensus decisions on the submitted policy. Here, the con-
sensus decision means all nodes make policy decisions with
majority voting through the blockchain consensus mechanism.

However, the ABAC/XACML must face the decentraliza-
tion problem of access policies when it is used in blockchain
IoT-ICS. As ABAC is also known as policy-based access con-
trol, the architecture of ABAC/XACML is mainly designed
and widely validated for an industrial environment having
a set of policies, which are generally managed by a sin-
gle trusted node. This node, as the center of the system, is
called policy administration point (PAP) in ABAC architec-
ture [6]. However, this architecture can not be easily applied
to more decentralized IoT-ICS environments, where multiple
nodes jointly manage the policies and make policy decisions
together in a collaborative way.

Aiming at the actual demands across the lifecycle of poli-
cies (including generation, application, renovation, revocation,
etc.), the policy decentralization of ABAC/XACML should
highlight the following two challenges.

1) Decentralized Policy Management: Access policies dele-
gated to the decentralized environment should be stored,
distributed, and maintained by all nodes, and these poli-
cies should also be credible and trustworthy to the
corresponding generators and consumers.

2) Decentralized Policy Execution: Access policies could
be retrieved and executed by any node in the decen-
tralized environment if needed, and the final decision is
made by using a consensus process with a majority of
nodes rather than an individual or a minority.

Although policy decentralization inevitably brings about a
series of problems, the decentralized policy implementation
also enjoys high availability and better autonomy for policy
management and execution in the industrial processes. More
specifically, the individual nodes have complete control of
their own resources by manipulating policies. As a result, the
administrative right of policies is vested in all nodes rather than
a central node. In view of these advantages, it is necessary to
explore a practical solution for the decentralized policy imple-
mentation of ABAC/XACML to develop global manufacturing
enterprises.

II. MOTIVATION AND APPROACH

Presently, the blockchain technique may be the best
choice to construct a decentralized IoT-ICS. Specifically, the
blockchain is considered as a sequential, tamper proof, and
decentralized ledger that stores records of transactions. These
transactions are validated by all nodes, then reach the agree-
ment through consensus protocol, and finally are appended
to blockchain. Furthermore, the integration of existing tech-
niques, including peer-to-peer networks, cryptographic algo-
rithms, scripting language, and consensus protocols, makes
blockchain in industrial settings of IoT-ICS with some salient
features, such as immutability, transparency, fault-tolerance,
traceability, low cost, and wide availability.

As shown in Fig. 2, the blockchain is a sequential chain for
storing a back-linked list of blocks, each of which is composed

Authorized licensed use limited to: Univ of Science and Tech Beijing. Downloaded on April 11,2022 at 12:07:37 UTC from IEEE Xplore. Restrictions apply.

CHEN et al.: POLICYCHAIN: DECENTRALIZED AUTHORIZATION SERVICE WITH SCRIPT-DRIVEN POLICY ON BLOCKCHAIN 5393

Fig. 2. Block structure of blockchain.

of a header and a body with batches of valid transactions. In
the block header, the hash of the previous block (Prev hash) is
recorded for linking the current block to the prior one, which
confirms the integrity of the previous block. In the block body,
all transactions are hashed into a Merkle tree (binary hash
tree), and its root (Tx hash) is recorded in the header. Besides,
the transaction may contain multiple inputs and outputs so that
the new transaction’s input can reference a previous transac-
tion’s output as its source. The validity of this reference can
be verified by using a stack-based script settled in the input
and output.

Aiming at these features, the blockchain designed for the
IoT-ICS can provide a new solution for access policy man-
agement and decision making by integrating it into the ABAC
architecture. The solution’s advantages are listed as follows.

1) Policy Unforgeability: By using a cryptographic sig-
nature and Merkel hash tree, the policies stored in
blockchain will be unforgeable and nontamperable.

2) Policy Availability: The decentralized storage allows
nodes to independently obtain any policy stored in the
blockchain, which improves the fault tolerance and wide
availability of the access control system.

3) Policy Consistency: Policy decision results need to be
agreed upon by consensus protocol throughout the whole
network, which greatly enhances the validity of policy
decision and reduces the impact of misjudgment.

4) Policy Traceability: Ledger-formatted structure provides
traceability for access control policies recorded in trans-
actions, such that auditors can retrieve the modification
history of a specific policy by backtracking all related
transactions.

Thus, the blockchain technology is a reasonable choice to
carry out our research on decentralized policy management
and execution. Moreover, as the most typical and earliest
blockchain, bitcoin system has been running stably for more
than ten years. Therefore, we adopt bitcoin architecture to
design and implement decentralized IoT-ICS.

A. Related Works

The XACML was presented by Anderson et al. [11] as a
language to define a schema for access control policies, access

requests, and the associated response within a determined envi-
ronment in an organization. However, the original XACML
architecture [6] with centralized policy management cannot be
so easily applied to more distributed or decentralized environ-
ments. For purpose of solving this problem, Listchka et al. [12]
proposed a framework for the execution of XACML poli-
cies in a distributed way. This framework is applied in a
context where an authorization decision in one local domain
depends on the decisions of other remote domains. Then,
Diaz-Lopez et al. [13] proposed an effective solution for dis-
tributed policy management where the master PAP assigns
the management operations to the slave PAPs in collabora-
tive environments composed of multiple security domains. The
similar works include: the OHRM system [14] for XACML
obligations handling, the extension of COPS protocol [15] for
distributed policy transport between policy enforcement point
(PEP) and policy decision point (PDP), and the JACPol policy
language [16] for converting existing extensible markup lan-
guage (XML) policies into JavaScript object notation (JSON)
format (not specific to blockchain). These existing distributed
access control schemes are insufficient in fairness and collab-
oration in comparison with decentralized systems, but provide
meaningful references for us to implement the decentralization
policy of XACML.

Along with the popularity of blockchain, several new types
of researches have been proposed to solve the above problem
by integrating the access control model and blockchain in
recent years. For example, Maesa et al. [7] described a proto-
type of a blockchain-based access control system for XACML
policies management in 2017. The system was implemented
by using bitcoin transactions to store the original XML-
based XACML policies, so that it could be considered as
a decentralized policy database. The pity is that their work
did not refer to decentralized policy execution and evalua-
tion. In 2019, Maesa et al. [17] furthered proposed a scheme
to codify XACML policy as a smart contract and deploy it
on a blockchain, the scheme was designed on off-chain plus
on-chain architecture and presented some conceptual descrip-
tions. However, as a program stored and run in bytecode,
the proposed policy is poor in readability, such that it is
unfriendly to policy managers. Zhu et al. [18] also presented a
transaction-based access control (TBAC) platform for digital
asset management based on blockchain. This platform built
four types of transactions as a bridge between ABAC and
blockchain to describe the access control procedure, includ-
ing subject registration, object escrow, access requirement, and
authorization, for resource distribution and sharing. The decen-
tralized approach in [18] provides a meaningful reference for
the storage and usage of attributes.

We here compare our framework with previous
schemes [7]–[10], and summarize the comparison results in
Table I. In [8], the Dike multitenant access control is intro-
duced, but it is just a distributed file management and does not
belong to the ABAC framework. The paper [9] implements a
decentralized policy evaluation and dataflow tracking system
based on a data usage control model. Moreover, this system
translates OSL policies into the Event-Condition-Action rule
and makes policy decision locally. The paper [10] proposes a

Authorized licensed use limited to: Univ of Science and Tech Beijing. Downloaded on April 11,2022 at 12:07:37 UTC from IEEE Xplore. Restrictions apply.

5394 IEEE INTERNET OF THINGS JOURNAL, VOL. 9, NO. 7, APRIL 1, 2022

TABLE I
COMPARISON OF OUR WORK WITH [7]–[10]

collaborative access control scheme based on attribute-based
encryption, but it still has centralized authorization nodes
to achieve key management. Compared with these four
frameworks in Table I, our framework has the following
advantages.

1) ABAC model is more fine-grained and flexible.
2) The “JSON + Script” format used for policy expression

ignores the process of constructing policy tree, and is
more compact and simple in syntax.

3) In contrast with other execution and verification meth-
ods, the combination of policy scripting interpreters and
consensus protocol can improve fault tolerance, be faster
and easier to decide and edit the policies.

B. Technology Roadmap

We focus on a practically decentralized solution for pol-
icy management and evaluation of ABAC/XACML to achieve
IoT-ICS in industrial settings. Compared with the traditional
centralization methods, this solution should make remark-
able improvements in reliability, availability, and security.
However, the following technical challenges still need to be
addressed.

1) How to concisely represent the ABAC/XACML poli-
cies in blockchain? To solve this challenge, we should
consider the following aspects: a) a well-defined syn-
tax and semantics should be specified to translate
XACML policies into the JSON-formatted transactions
in blockchain, to strip away the redundant meta data in
the XML-formatted XACML policies and b) the hierar-
chical structure (including condition, rule, and policy)
in ABAC/XACML policies should be organized into
JSON syntax rules embodied in transactions, and their
semantics are identical.

2) How to implement efficient decentralized policy eval-
uation? To solve it, we try to take advantage of the
blockchain’s powerful and efficient scripting system,
then we consider the following aspects: a) the logi-
cal expressions of ABAC policies need to be converted
into the scripting instructions for policy evaluation and
b) the blockchain’s inherent scripting interpreter should
be improved to support attribute acquisition [from policy
information points (PIPs)] and hierarchical JSON syntax
evaluation (based on condition, rule, and policy).

3) How to implement policy lifecycle management? In
order to manage policies at the transaction level, we con-
sider the following aspects: a) since the blockchain are

immutable, a policy maintenance mechanism is needed
to satisfy the requirements of creating, updating, and
revoking during policy lifecycle and b) each of the nodes
in the decentralized system should be autonomous but
the behavior of policy creation, renovation, and revo-
cation must be restricted in an explicit and trustworthy
way.

C. Our Contributions

Motivated by the three aforementioned challenges in decen-
tralized IoT-ICS, we present a blockchain-based access con-
trol framework, called Policychain, for decentralized pol-
icy storage, evaluation, and lifecycle management. In this
framework, a concise, lightweight, and interpretively exe-
cutable policy model is integrated into blockchain by using
a stack-based script, JSON-formatted transaction, and formal-
ized ABAC/XACML language. We call this model “JSON
+ Script” format. Our main contributions are summarized as
follows.

1) Present a transaction-oriented policy expression scheme,
where the responsibilities of PAP and PDP in ABAC
are offloaded to each blockchain node as a founda-
tion of decentralized policy management and evaluation
services. Moreover, a well-defined set of semantics over
attribute, expression, rule, target, and policy is proposed
to translate XACML policies into blockchain transac-
tions with hierarchical JSON syntax and script-based
logical expression.

2) Realize a script-driven policy evaluation scheme by
extending Bitcoin’s scripting instructions to support
attribute acquisition of the subject, object, action, and
environment entities in the script execution process.
Based on this, a new policy scripting interpreter is
constructed on three evaluation algorithms (evalScript,
evalRule, and evalPolicy) to parse the hierarchical JSON
syntax.

3) Propose a policy lifecycle management scheme based on
policy issuing transactions (PITs), in which bidirectional
checking between protected resource and issued policy
is enforced by complying with three validation princi-
ples of policy verification. Meanwhile, the traceability of
three policy lifecycle stages, from policy creation, reno-
vation, to revocation, could be guaranteed by designing
an uninterrupted, verifiable transaction stream through
continual references between transactions’ inputs and
outputs.

Authorized licensed use limited to: Univ of Science and Tech Beijing. Downloaded on April 11,2022 at 12:07:37 UTC from IEEE Xplore. Restrictions apply.

CHEN et al.: POLICYCHAIN: DECENTRALIZED AUTHORIZATION SERVICE WITH SCRIPT-DRIVEN POLICY ON BLOCKCHAIN 5395

Fig. 3. ABAC reference architecture of our design for IoT-ICS.

We also analyze the security of our framework at three aspects
of policy storage, evaluation, and management, and then
evaluate the performance of a Policychain prototype system.

Organization: The remainder of the paper is organized as
follows. We describe our Policychain framework in Section III
and then illustrate how to extend script’s instructions and
improve script interpret for policy evaluation in Section IV.
The policy representation and the corresponding management
scheme are presented in Sections V and VI, respectively. We
provide security and performance evaluation in Section VII.
This article concludes in Section VIII.

III. SYSTEM FRAMEWORK

We address the problem of protecting the shared resources
in decentralized IoT-ICS. Our approach is to integrate
blockchain with the ABAC model [19] for applying and man-
aging policies as a reliable authentication service in industrial
environments. We design a new transaction form to represent
and store ABAC-type policy in the blockchain, and further
provide a new perspective to make policy decisions on the
blockchain’s scripting interpreter. In this way, all authorized
IoT devices will be allowed to access off-chain resources
through access authorization on the on-chain policy. Moreover,
to offload the responsibility of ABAC policy administration
and decision making to blockchain nodes, we allow each node
to play two roles, both being as a policy administrator and as
a performer.

A. ABAC/XACML Model

To date, the most prevalent ABAC standard is OASIS’s
XACML [19]. It defines a declarative fine-grained, XML-
based policy language, and a request/response processing
model, which describes the way of evaluating access requests
according to the rules defined by the policy language. In an
ABAC model for industrial communication of IoT-ICS, there
are four entities, subject, object, action, and environment. The
characteristics of these entities are defined as attributes. Based
on attributes, access policy extracted from common rules can
be used to determine whether a subject should be allowed
to perform expected operations (actions) on objects under a
specific environment.

Fig. 3 shows an ABAC’s reference architecture for the
IoT environments. The architecture includes four main service
nodes.

Fig. 4. System model with integration of blockchain and ABAC.

1) Policy enforcement point is a module that receives
requests from applications and performs access con-
trol by making decisions on requests and enforcing
authorization decisions.

2) Policy decision point is a module that evaluates appli-
cable policy and renders an authorization decision.

3) Policy administration point is a system module that
creates and manages access policies, which are specified
by the resources’ owners, in a policy repository.

4) PIP consists of many distributed modules that act as
a source of attribute values. It is shown as one log-
ical repository but may comprise multiple physical
repositories.

In this model, PDP and PEP can be distributed or central-
ized, but PAP is usually centralized to simplify policy man-
agement. For access requests, the workflow of this architecture
is described as follows.

1) The PAP stores the resource owner’s policies and makes
them available to the PDP via a policy repository.

2) The PEP intercepts the access request from an authen-
ticated subject and sends the request to the PDP.

3) The PDP makes access decision according to access
policy generated by PAP and the attributes of subject,
object, and environment obtained by querying the PIP.

4) The final decision result given by the PDP is sent to
the PEP, and then the PEP fulfills the access request
according to the decision of PDP (either permit or deny).

B. Our Policychain Framework

To apply the ABAC/XACML model, we present a novel
blockchain-based ABAC framework, called Policychain, for
enhancing availability, unforgeability, consistency, and trace-
ability of policy management and execution under the
decentralized IoT-based environment. The framework con-
sists of two components: 1) resource subsystem (RS) and
2) blockchain subsystem (BS), as shown in Fig. 4.

The RS component is responsible to store and manipu-
late the shared resources in public storage environments (e.g.,
cloud server). Specifically, it contains two modules: 1) data
depository server (DDS) and 2) PEP. The DDS must be trusted
to support storing the shared objects hosted by their owners,
and providing access service for these objects. Furthermore,
the virtualization technique could be used to support the
dynamic deployment of the PEP servers.

Authorized licensed use limited to: Univ of Science and Tech Beijing. Downloaded on April 11,2022 at 12:07:37 UTC from IEEE Xplore. Restrictions apply.

5396 IEEE INTERNET OF THINGS JOURNAL, VOL. 9, NO. 7, APRIL 1, 2022

Fig. 5. Blockchain architecture for Policychain framework.

The BS component adopts the blockchain to manage all
policies in the whole system and provides an authentication
service based on policy evaluation. This component is con-
structed by a complete blockchain network, where many ASNs
work together to maintain an access policy ledger called a
policy chain. The policy chain and ASN are described as
follows.

1) Policy Chain: It refers to a decentralized, always avail-
able, irreversible, tamper-resistant and replicated grow-
ing list of access policies, and each policy is considered
as a transaction on the blockchain.

2) Authentication Service Nodes: All of them make up the
blockchain network, jointly manage the policy chain on
blockchain, and provide a collaborative authentication
service based on policy decision-making for an access
request.

The ASN is essentially a billing node in the original
blockchain network, but the functions of PDP and PAP are
appended to conveniently store and retrieve the policies on
the policy chain. In addition to PAP and PDP of XACML, the
ASN adds a new module, called policy script interpreter (PSI).
This module is an extended Bitcoin’s script interpreter that
validates the policy-oriented scripts in the above-mentioned
transactions (see Section VI-A). In Fig. 4, to clearly focus on
the main components of our model, we do not describe some
details related to network and consensus protocol.

C. Our Policychain Architecture

The key component of the blockchain IoT platform is the
embedded ASN in IoT devices. The ASN is a “plug and play”
solution that allows users to send various transactions to the
blockchain network. All nodes may be permitted to access the
transactions in blockchain, so as to realize communication and
sharing among IoT devices. Our Policychain framework can
be constructed by using the existing blockchain techniques.
In terms of software architecture, the Policychain adopts a
hierarchical structure, as shown in Fig. 5. More specifically, it
can be divided into the following three layers.

1) Contract Layer: supports the description and evaluation
of predefined policies or rules in the form of executable
scripts. The scripting language is designed to fulfill pol-
icy expressions in the Policychain by establishing a
script-driven policy model (Section V-A) and supporting
policy opcodes (Section IV-A). Moreover, three kinds of
interpreters, including evalScript (Section IV-B), eval-
Rule (Section V-B), and evalPolicy (Section V-C), are
inserted into the script interpreter/engine to support
policy decision-making.

2) Transaction Layer: supports encapsulation of the con-
tents of the contract layer in the form of transactions, and
establishes the reliable connection between transactions.
The encapsulation syntax of attribute script, expres-
sion/rule script (Section V-B), and target/policy script
(Section V-C) will be used to realize the scripting repre-
sentation of access policies. Moreover, a reliable connec-
tion between policy-related transactions (Section VI-C)
is built on cryptography-based authentication scripts
(Sections VI-A and VI-B) in order to implement the
Policychain management and security.

3) Consensus Layer: supports the sharing of transactions
in blockchain in the form of blocks. The existing
blockchain’s consensus mechanism is used to package
the valid transactions in a certain period of time into the
block, and ensure the authenticity and validity of shared
transactions.

The reason why the script is adopted by Policychain is that
it is simpler and more efficient than smart contracts based on
virtual machines and Docker for the IoT system. Moreover,
the Policychain architecture is not limited to blockchain
architecture. The reason is that the Policychain is designed
above the transaction layer (involving transactions and scripts),
rather than block structure (consensus mechanism), blockchain
network, and other underlying techniques.

In order to increase the applicability of blockchain IoT
devices, the consortium blockchain will be recommended as
the best choice of our Policychain. As shown in Fig. 5, the
blockchain nodes can be divided into two categories: 1) full
nodes and 2) lightweight nodes. The full node is responsible
for storing a complete list of all transactions and uses con-
sensus algorithms to build valid transactions into blocks. The
lightweight node is not responsible for a consensus mechanism
(such as mining) that consumes more resources but instead
needs to connect to a full node in order to synchronize to
the current state of the network and be able to participate.
Therefore, the data encapsulated in the form of transactions
can be submitted or the data authorized to access can be
obtained.

D. Workflow of Policy Decision-Making

The workflow of our Policychain framework can support
a more flexible access control for decentralized resources.
Before proceeding to the policy decision making, we describe
the process of resource submission and policy publishing as
follows.

Authorized licensed use limited to: Univ of Science and Tech Beijing. Downloaded on April 11,2022 at 12:07:37 UTC from IEEE Xplore. Restrictions apply.

CHEN et al.: POLICYCHAIN: DECENTRALIZED AUTHORIZATION SERVICE WITH SCRIPT-DRIVEN POLICY ON BLOCKCHAIN 5397

1) Submitting Resource: While intending to share a
resource, the owner sends the object and its attribute
information to a DDS and further, he/she can specify the
corresponding access policy for the object and submit it
to the ASN’s PAP.

2) Issuing Policy: After receiving the access policy submit-
ted by the owner, the PAP converts it into a transaction
(called PIT) and stores it into the policy chain by using
consensus protocol with the access policy validation (see
Section VI-B).

We here explain how the ASN responds to the application’s
access request on the object stored in the DDS. At the begin-
ning, the access requester sends a request to the PEP, and then
the PEP transfers the request to a certain ASN’s PDP. For such
an access request, our framework works as follows.

1) Retrieving Policy: Upon receiving the request, the PDP
queries the policy chain about the applicable access pol-
icy. The policy chain returns the policy2 whose target
matches the request (see Section V-C).

2) Acquiring Attributes: once receiving the returned policy,
the PDP queries PIPs (via LDAP, environment resolver,
RDBMS) for the verifiable attribute values specified by
the attribute scripts (see Section V-B) in the policy. We
note that the process is quite similar in the XACML.

3) Making Decision: After validating the attribute values,
the PDP invokes the PSI to execute the script in the pol-
icy (see Section V-C). For the script’s execution result
(either permit or deny), the PDP calls consensus proto-
col to verify its correctness by collaborating with other
nodes.

4) Enforcing Request: After the whole network reaches a
consensus on the result, the PEP fulfills the requested
action to access the resources in the DDS if permitted.

The above consensus protocol is a multiparty process used
to achieve agreement on the result of a single computation
or decision problem among the distributed and decentralized
networks in the domain of IoT-ICS. In the existing blockchain
consensus protocol, this process is divided into two steps:
1) each of the nodes verifies the correctness of the transaction
(as an encapsulation of the above problem) and broadcasts
its own determination and 2) the whole network agrees with
the decisions of the majority as the final result of transaction
verification. There exist various consensus protocols for differ-
ent scenarios, such as Proof of Work (PoW), Proof of Stack
(PoS), and practical Byzantine fault tolerance (PBFT) [20].
We here do not specify which one is used in our framework.
Actually, our framework can support all the above consensus
protocols, and we recommend readers to choose one matching
their actual needs for the implementation.

Generally speaking, our framework is similar to XACML
but provides three advanced features: 1) we transfer the pol-
icy storage location from the centralized database to the
blockchain; 2) both PDP and PAP are integrated into the
blockchain node so that all of the nodes jointly support

2In this article, we will only consider the case of single policy matching. We
might deal with multipolicy matching by using the policy-combining method
which is similar to the rule-combining method proposed in Section V-A.

policy management and evaluation; and 3) we employ the
blockchain’s script interpreter to perform the policy decision-
making in a more efficient manner.

E. Technical Challenges

Before the detailed description of our design for IoT-
ICS, we identify the technical challenges in implementing
the Policychain framework. Some existing techniques provide
solid building blocks for our work: 1) the inherent mechanisms
of blockchain, e.g., flexible transaction structure, consensus
mechanism, hash/signature verification, can provide a secure,
trustworthy, efficient support for access policy storage, shar-
ing, and maintenance; 2) the XACML defines the specification
of request/response between PEP and PDP, as well as that
between PDP and PIP, to help us simplify our design; and
3) we use some elegant technologies, such as the operation on
visitors and resources in the cloud needs to be authenticated by
signature, to ensure that the cloud is able to provide a secure
platform to perform object storage and decision enforcement.

Due to the help of the above techniques, we can only
focus on the problem of how to integrate PAP and PDP with
blockchain nodes, which reflects the part of the red box in
Fig. 4. We state that solving this problem can yield the ben-
efit that the interface of the Policychain node can be invoked
to implement effective services of policy management and
execution. We can unfold the above problem into two aspects.

1) Transaction-Oriented Policy Expression: To avoid the
cumbersome format of XML-based policy expression in
XACML, we will design a new JSON-formatted trans-
action for a more lightweight policy encapsulation. In
addition, Bitcoin’s script language will be used to further
simplify policy expression.

2) Script-Driven Policy Evaluation: To reduce the com-
putational overhead of XML-based policy parsing in
XACML, we will develop a new PSI for a faster eval-
uation of access policy defined by three hierarchical
elements (including policy, rule, and condition).

In addition to the above problems, we still need to address
two other problems. One is how to manage policies in the
view of their lifecycle from creation through use, renewal,
and finally to revocation; and the other is how to ensure the
security of policy storage, decision making, and management.

IV. SCRIPT IMPROVEMENT FOR POLICY EVALUATION

Our goal is to enable access policies to be stored and exe-
cuted in the blockchain of an IoT-ICS. To achieve this goal, we
will do some preparatory work by improving the blockchain
scripting system to support the expression and execution of
access policies. We will review the typical scripting lan-
guage in blockchain, then illustrate our improvements on new
attribute-oriented opcodes that are applied to our framework.
We will also explain the script evaluation and its workflow in
detail.

A. Policy Script Language

The scripting mechanism [21] is the inherent capability
of current blockchain systems (e.g., Bitcoin, Multichain, and

Authorized licensed use limited to: Univ of Science and Tech Beijing. Downloaded on April 11,2022 at 12:07:37 UTC from IEEE Xplore. Restrictions apply.

5398 IEEE INTERNET OF THINGS JOURNAL, VOL. 9, NO. 7, APRIL 1, 2022

TABLE II
OPCODE EXAMPLES FOR ACCESS CONTROL

Litecoin) to validate transactions. Similar to the FORTH lan-
guage, the script is a stack-based language based on reverse
polish notation (RPN). RPN is a method to represent expres-
sions in which the operator symbol (called opcode) is placed
after the arguments being operated on. And, it is a string
of lists of instructions recorded with each transaction. The
core of scripts is a set of opcodes which starts with “OP_”
and is concatenated with a specific operation name, e.g.,
OP_EQUAL, OP_DROP, and OP_SHA256. Table II shows the
opcodes associated with logical and numerical comparisons
in the scripting interpreter. For example, the script “〈a〉 〈b〉
OP_EQUAL” is used to verify if a is equal to b, where the
string between 〈〉 denotes the operand.

The blockchain’s scripting mechanism has a relatively com-
plete instruction set, but it is not specifically designed for the
access control process. Therefore, we need to introduce new
instructions, called attribute acquisitions, to support the policy
script. We define four new opcodes, including OP_SUBATTR,
OP_OBJATTR, OP_ACTATTR, and OP_ENVATTR, to get
the attribute values of subjects, objects, actions, and environ-
ment conditions for a specified attribute, respectively. Each of
opcodes takes an attribute name as input and outputs a corre-
sponding attribute value, for example, “〈age〉 OP_SUBATTR”
will return the subject’s age as a result. In Table II, we show
the details for these instructions.

B. Policychain’s Script Interpreter Implementation

The PSI is used to directly execute instructions written in a
policy script language. For the above-mentioned policy script,
the process of script execution is described as evalScript() in
Algorithm 1. According to the type of the element pointed by
the top-of-stack pointer (called script pointer), the execution
of the script has two different cases.

1) When the script pointer points to an OPERAND, it is
pushed onto the top of the stack;

2) When the script pointer points to an OPCODE, the
operation defined by the opcode is executed by the

Algorithm 1 evalScript(scripts)
Input: Script[] scripts;
Output: Boolean result;

1: Stack s ← Initialize Stack;
2: for all item in scripts do
3: if item is instance of OPERAND then
4: s.push(item);
5: else if item is instance of OPCODE then
6: length ← get number of inputs of the OPCODE item;
7: inputs[];
8: for i = 0 to length− 1 do
9: inputs.add(s.pop());

10: end for
11: output ← execute OPCODE item with inputs;
12: if output != null then
13: s.push(output);
14: end if
15: end if
16: end for
17: return s.Top;

scripting interpreter and one or more top-level elements
are popped up as the input of the operator if needed;
then, the output of the operator is pushed onto the stack.

In Algorithm 1, the script interpreter executes the script
from left to right, and it only needs to look forward to a symbol
(expressed by “item”) to determine the parsing action at each
step. This ensures the execution of the script is sequential
and unambiguous. Therefore, the expression and execution of
script can provide effective support for access control.

For a given policy script with attribute acquisition opcodes,
we here take OP_SUBATTR as an example to illustrate the
execution process of the script, as follows.

1) Check if the stack height is greater than 1, and throw
an exception if it is not.

2) Pop up the top element of the stack as the attribute name
and request the PIP to get the subject’s attribute value
from the context of the PIP or the access request.

3) If the returned value is not empty, push it onto the stack;
otherwise, an exception is thrown.

Note that, the exception usually causes the termination of
script execution and the invalidation of the script decision.

V. REPRESENTATION OF POLICIES IN POLICYCHAIN

One of our core techniques can translate access policies
into the format of a blockchain transaction, which is called
transaction-derived policies. This new format will help us eas-
ily share and propagate the policies among all nodes in the
whole blockchain, as well as to help the PDP make a policy
decision for access requests. We below focus on the expres-
sion and storage of ABAC/XACML policies in blockchain.
We will present a formal model for access policies applied to
our framework, and further propose a new expression syntax
of policies to adhere to blockchain’s transaction format.

A. Script-Driven Policy Model

We here propose a formal model to represent the access
policy in the blockchain. We state that an XML-based syntax
of policy expression in the XACML model is too cumbersome
and redundant to be directly used into blockchain transac-
tions [22]. Therefore, we need to define a more concise syntax

Authorized licensed use limited to: Univ of Science and Tech Beijing. Downloaded on April 11,2022 at 12:07:37 UTC from IEEE Xplore. Restrictions apply.

CHEN et al.: POLICYCHAIN: DECENTRALIZED AUTHORIZATION SERVICE WITH SCRIPT-DRIVEN POLICY ON BLOCKCHAIN 5399

Fig. 6. Structure of the script-driven policy model.

that can be directly applied to blockchain. An entity is rep-
resented by a set of attributes. The symbols, S, O, A, and
E, represent four types of entities (including subject, object,
action, and environment) in the ABAC model, respectively.
Denotes X = S ∪ A ∪ O ∪ E as a set of all entities.

A function ATTR(x) : X→ V is called attribute acquisition
function on the attribute value set V , if for any entity x ∈
X, ATTR(x) = v means that x on the attribute ATTR has a
specified value v ∈ V . For example, given a function Role(s)
and the current requester “Alice,” the PIP will retrieve and
return doctor as the Role of subject s = Alice, i.e., Role(s) =
doctor.

Let ∧, ∨, and ¬ denote the typical boolean operators (AND,
OR, and NOT) and � denote a binary predicate (e.g., <, ≤,
=). For the policy space Expr, a policy expression e ∈ Expr
is of the form

e := ATTR1(x1) � v|ATTR1(x1) � ATTR2(x2)|
e1 ∧ e2|e1 ∨ e2|¬e1|φ (1)

where x1, x2 ∈ X, v ∈ V is a concrete value, e1 and e2 are
other expressions, and φ is an empty expression. For instance,
the expression expr1 := (Level(s1) < Level(o1))∧(Role(s1) =
“doctor”) is to determine if the level of the subject s1 is higher
than that of the object o1 and the role of s1 is doctor.

Let R and P be rule set and policy set, respectively. Define
D = {Permit, Deny} be a decision set. The rule and the policy
are defined, respectively, as follows.

1) A rule r ∈ R is a pair (expr, eff) for an expression expr ∈
Expr and a specified effect eff ∈ D;

2) A policy p ∈ P is a triple (t, rc, comb) for a tar-
get expression t ∈ Expr, an ordered rule set rc =
{r1, . . . , rm} and a specified combining algorithm comb,
where ri ∈ R for all i ∈ [1, m].

For convenience, r.expr indicates expr is in rule r. The effect
eff (Permit or Deny) denotes the expected decision to allow or
deny access to resource, i.e., the output of r is equal to eff if
expr in r is true. For example, rule1 := (expr1, Deny) means
that the output of rule1 is Deny if expr1 is true. Moreover,
we abandon the “indeterminate” policy decisions defined in
XACML 3.0, so that the relation ¬Permit = Deny holds.
This ensures that any exception or mis-matching expression in
the decision process will directly lead to the policy decision
failure.

As shown in Fig. 6, the access policy is composed of one
target and many rules. In a policy p ∈ P, the target t can

be considered as a simple rule. It is used to quickly match
the access policy according to the access request, but not par-
ticipate in the policy decision-making. To evaluate a policy,
the rule-combining algorithm comb : Dm → D is presented
to combine many rule’s decision results into one final pol-
icy’s result. To this end, we define the functions evalRule and
evalPolicy as follows.

Definition 1 (Rule Evaluation Function): The rule
evaluation function evalRule : R × 2X → D is used to
evaluate any rule r ∈ R for a given entity set Xc ⊆ X, i.e.,
evalRule(r, Xc) ∈ D.

For example, evalRule(rule1, {Alice, MedicalRecord}) =
Deny indicates that the output of rule1 is Deny if the expres-
sion (Level(Alice) < Level(MedicalRecord))∧(Role(Alice) =
“doctor”) in rule1 is true (in this case, eff = Deny) for a subject
Alice and an object MedicalRecord, as described above.

Definition 2 (Policy Evaluation Function): The policy
evaluation function evalPolicy : P × 2X → D takes an
access policy p and an entity set Xc ⊆ X as inputs and a
decision d ∈ D as output, i.e., evalPolicy(p, Xc) = d. The
decision-making process can be divided into two steps.

1) For each rule ri ∈ p.rc in policy p, it executes the func-
tion evalRule(ri, Xc) = di for i ∈ [1, m] to produce the
result set D = {d1, d2, . . . , dm} of p.rc.

2) Using the rule-combining algorithm p.comb(D) defined
in Policy p to combine all rule’s evaluation results into
a final policy’s evaluation result.

We now illustrate three typical modes of the rule-combining
algorithm used in our IoT-ICS, as follows.

1) Permit Overrides: It indicates that as long as there is a
rule whose evaluation result is Permit, the decision of
the policy is output as Permit, i.e., evalPolicy(p, Xc) =
Permit↔ ∃r ∈ p.rc ∧ evalRule(r, Xc) = Permit.

2) Deny Overrides: It indicates that as long as there is a
rule whose evaluation result is Deny, the decision of
the policy is output as Deny, i.e., evalPolicy(p, Xc) =
Deny↔ ∃r ∈ p.rc ∧ evalRule(r, Xc) = Deny.

3) First Applicable: It takes the decision result of the first
rule in the policy as the decision result of the policy,
i.e., evalPolicy(p, Xc) = evalRule(First(p.rc), Xc), where
First(rc) returns the first rule in the rule set rc.

B. Policy Components in Transaction

Most existing blockchains, such as Bitcoin and Ethereum,
use JSON as the transaction description language. This is
because JSON is a lightweight and ideal data-interchange for-
mat for machines generation and parsing. Therefore, we now
describe an effective approach to convert the aforementioned
policy model into a JSON-formatted policy representation. The
core technology behind this conversion approach is to adopt
the script of blockchain to explain the expression of poli-
cies, so that the policies can be executed efficiently by the
blockchain’s scripting interpreter.

We first introduce the syntax structure of JSON. A JSON
message is usually composed of JSON objects and arrays
defined as follows.

Authorized licensed use limited to: Univ of Science and Tech Beijing. Downloaded on April 11,2022 at 12:07:37 UTC from IEEE Xplore. Restrictions apply.

5400 IEEE INTERNET OF THINGS JOURNAL, VOL. 9, NO. 7, APRIL 1, 2022

1) JSON object is a set of attribute-value pairs
enclosed within curly braces, i.e., {name1 : value1,

name2 : value2, . . .}. For example, {“Role” : “doctor”}.
2) JSON array is an ordered list of values, whose

type may be string, number, object, boolean, array
and null, enclosed within square brackets, i.e.,
[value1, value2, . . .].

We now introduce the JSON-formatted script language to
express each component in the policy, as follows.

Definition 3 (Attribute Script): An attribute script repre-
sents that the attribute acquisition function ATTR(x) obtains
the attribute value of entity x. The format of attribute script is
defined as “〈attr〉 OP_CODE,” where OP_CODE is the opcode
defined in Table II.
For example, the script “〈Age〉 OP_SUBATTR” is equivalent
to the function Age(s) for getting the age of subject.

Definition 4 (Expression Script): The JSON format of an
expression script corresponding to (1) is defined as

{id : 〈ExprID〉, expr : 〈Script〉}
where id is used to identify the expression, expr is a script
which is used to describe the expression.

Scripts in expression can be divided into three cases.
Case 1: The expression ATTR1(x1) � v can be translated

into the JSON-formatted representation which con-
tains ONE single attribute script and a comparison
opcode, such as

{id : “expr1”, expr : “〈Role〉 OP_SUBATTR

〈doctor〉 OP_EQUAL”}
{id : “expr2”, expr : “〈ID〉 OP_OBJATTR

〈MedicalRecord〉 OP_EQUAL”}.
This indicates “expr1” is Role(s) = doctor and
“expr2” is ID(o) = MedicalRecord, respectively.

Case 2: The expression ATTR1(x1) � ATTR2(x2) can be
translated into the JSON-formatted representation
which contains TWO attribute scripts and a com-
parison opcode, e.g.,

{id : “expr3”, expr : “〈Level〉 OP_SUBATTR

〈Level〉 OP_OBJATTR OP_LESSTHAN”}.
This indicates “expr3” is Level(s) < Level(o).

Case 3: The expression e1|e1 ∧ e2|e1 ∨ e2|¬e1|φ(e1, e2 ∈
Expr) can be translated into the JSON-formatted
representation which consists of boolean logic
(expressed by the opcode in {OP_BOOLAND,
OP_BOOLOR, OP_NOT}) over the expressions
cited by 〈ExprID〉. For example

{id : “expr4”, expr : “〈expr1〉〈expr2〉
OP_BOOLAND”}

indicates “expr4” is (Role(s) = doctor)∧(ID(o) =
MedicalRecord). In special cases, expr can be
empty or only a reference to the condition on case
1 or 2.

Algorithm 2 evalRule(rule)
Input: Rule rule;
Output: Effect result;

1: Script[] script=[];
2: for all item in rule.expr do
3: if ! item is instance of OPCODE then
4: Expression temp = getExpressionById(item);
5: if item==null then
6: return “Deny”;
7: end if
8: script.add(evalScript(temp.expr));
9: else

10: script.add(item);
11: end if
12: end for
13: if evalScript(script) then
14: return rule.effect;
15: else
16: if r.effect == “Permit” then
17: return “Deny”;
18: else
19: return “Permit”;
20: end if
21: end if

The expression abiding by case 1 or 2 is often called as
“condition” to distinguish them from boolean logic.

Definition 5 (Rule Script): For a given rule expressed by
the pair (expr, eff), its JSON-formatted representation is
defined as

{id : 〈RuleID〉, effect : 〈eff〉, expr : 〈Expression Script〉}

where id is used to identify the rule, effect is the value of eff,
and expr is the expression on case 3.
Here, we take a rule example including the aforementioned
examples

{id : “rule1”, effect : “Deny”, expr : “〈expr1〉 〈expr2〉
OP_BOOLAND 〈expr3〉 OP_BOOLOR”}

which declares that the rule “rule1” outputs “Deny” if the
expression ((Role(s) = doctor)∧(ID(o) = MedicalRecord))∨
(Level(s) < Level(o)) is true. Note that, an empty rule is
always satisfied and the predefined effect is returned as output.

For a rule script, we describe its evaluation process
evalRule() in Algorithm 2. This process can be accomplished
by evaluating the expressions of rule in a nested manner, where
the expression evaluation is done by invoking evalScript() as
described in Algorithm 1. Moreover, getExpressionById(item)
is used to return an expression object whose id property can
match the specified string item.

In particular, there exist two cases in the evaluation pro-
cess of rule: 1) the iterator item points to an opcode,
where item is added to script and 2) item points to an
expression id, where the expression is retrieved according to
id [using getExpressionById(item)] and its evaluation result
[using evalScript()] is added to script. Finally, the desired
effect associated with the rule is returned only if the final
result of script evaluation is true. Note that if the expression
associated with id does not exist, the rule evaluation returns
“Deny.”

Authorized licensed use limited to: Univ of Science and Tech Beijing. Downloaded on April 11,2022 at 12:07:37 UTC from IEEE Xplore. Restrictions apply.

CHEN et al.: POLICYCHAIN: DECENTRALIZED AUTHORIZATION SERVICE WITH SCRIPT-DRIVEN POLICY ON BLOCKCHAIN 5401

C. Target and Policy

We introduce the JSON-formatted representation of the tar-
get, and then comprise the aforementioned policy components
into a complete policy. A target is basically a collection of
simple expressions (refer to case 1 for a static value) of three
“matching” entities: 1) subject; 2) object; and 3) action. In
fact, the target specifies “matching regulations” to determine
whether the policy is applied to an incoming request. Thus,
the target is used to quickly find the policy applied to a given
request.

Definition 6 (Script-Driven Target): For a given target
composed of a set of expressions {ATTR(Entity) = attrvalue},
the JSON-formatted representation of this target is defined as

[{attr : 〈ATTR#Entity〉, value : 〈attrvalue〉}, . . .]

where attr indicates an attribute of entity with the attribute
ATTR, “#” is a connector, the entity type Entity ∈
{Sub, Obj, Act}, and value is a string of the corresponding
attribute value.

While evaluating the request, the PDP is responsible to
search policy whose target matches the request. The matching
regulations used to evaluate the target are outlined as follows.

1) An empty target value can match any request, but the
request must contain this target attribute.

2) The evaluation result will be “true” if the request can
match all of the attr/value pairs with the different attr
in the target, or “false” otherwise.

3) The evaluation for multiple attr/value pairs with the
same attr is considered to be successful if the request
can match at least one of them.

For example, a target which is defined as

[{attr : “Role#Sub”, value : “doctor”}
{attr : “ID#Act”, value : “read”}
{attr : “ID#Act”, value : “write”}]

will apply to “either read or write access required by a doctor,”
that is, Role(s) = doctor ∧ ID(a) ∈ {read, write}. The JSON-
formatted policy is defined as:

Definition 7 (Script-Driven Policy): For a given policy cor-
responding to the triple (target, rule, comb), its JSON-
formatted representation is defined as

{
id : 〈PolicyID〉, condition :

[〈Expression Script〉, . . .]
rule :

[〈RuleScript〉, . . . ,]
, target : 〈Target〉

ruleCombiningMethod : 〈comb〉}
where id is used to identify the policy, condition is the expres-
sion abiding by case 1 or 2, and ruleCombiningMethod spec-
ifies how to combine multiple rules into the final evaluation
result.

The decision-making process of access policy can be
divided into two steps: 1) the PDP finds out the policy whose
target matches the access request and 2) then executes the rule
scripts in policy and outputs their combination results. For a
given query policy request, there are two typical approaches:
1) the PDP maintains an indexing table of policy’s targets that
allow queries to efficiently retrieve policies from Policychain

Algorithm 3 evalPolicy(policy)
Input: Policy policy;
Output: Effect result;

1: switch policy.ruleCombiningMethod
2: case Permit-overrides:
3: for all rule in policy.rule do
4: if evalRule(rule)==“Permit” then
5: return “Permit”;
6: end if
7: end for
8: return “Deny”;
9: end case

10: case Deny-overrides:
11: for all rule in policy.rule do
12: if evalRule(rule)==“Deny” then
13: return “Deny”;
14: end if
15: end for
16: return “Permit”;
17: end case
18: case First-applicable:
19: return evalRule(First(policy.rule));
20: end case
21: end switch
22: return “Deny”;

and 2) the PDP loads all available policies and matches their
target elements with the context of a particular request to
identify one or more policies applied to the request. For a
retrieved policy, evalPolicy() describes the evaluation process
of a JSON-formatted policy in Algorithm 3. In this process,
each rule in policy will be evaluated by invoking evalRule().
Further, three common rule-combining methods are used to
evaluate the final output of all rules in policy. In addition, new
rule-combining methods could be appended into evalPolicy()
according to practical requirements on IoT-ICS.

VI. POLICYCHAIN MANAGEMENT AND SECURITY

EVALUATION

On the basis of the JSON-formatted policy expression
and script-driven policy execution, we develop an effective
mechanism for access policy encapsulation and distribution
in this section. This mechanism will conduce to policy life-
cycle management from creation through use, renewal, and
finally to revocation. Moreover, cryptography-based authenti-
cation script is used to enhance the Policychain management
against policy tampering, forgery and misuse. Finally, we ana-
lyze the security of the Policychain framework designed for
an IoT-ICS.

A. Policy Issuing Transaction

The PIT, as the fundamental recording unit in blockchain,
is designed to record access policy in our framework. To have
an intuitive and clear understanding, we will describe the PIT
at two aspects: one is the structure of the PIT, and the other
is the approach to manage policies at the transaction level.

As shown in Table III, the PIT consists of the encapsu-
lation of aforementioned policy components and some items
required for access control. First, all of the highlighted items,
including target, condition, rule, and ruleCombiningMethod,
are grouped together to represent the access policy stored in
the PIT. Second, three additional items, state, URL, and TxID,

Authorized licensed use limited to: Univ of Science and Tech Beijing. Downloaded on April 11,2022 at 12:07:37 UTC from IEEE Xplore. Restrictions apply.

5402 IEEE INTERNET OF THINGS JOURNAL, VOL. 9, NO. 7, APRIL 1, 2022

TABLE III
PIT DATA STRUCTURE

Fig. 7. Authentication procedure for scriptPubKey and scriptSig.

are designed to assist the policy execution, where state indi-
cates that the policy is valid (1) or invalid (0), URL points to
the resource managed by the policy, and TxID is the transac-
tion hash for identifying the policy in the blockchain. Finally,
two fields, vin and vout, have the same structure with those
of Bitcoin transactions, but they have new meanings for pol-
icy management, where vout (as the output of transaction) is
used to declare the policy’s ownership, and vin (as the input
of transaction) is used to verify the policy’s ownership.

In the PIT structure, the cryptography-based authentication
script, including scriptPubKey and scriptSig, is used to confirm
the ownership of policy. This script is in essence a crypto-
graphic signature, which describes how to verify the consumer
of the current transaction as the asset holder declared in the
previous transaction indexed by “TxID” (transaction hash).

As shown in Fig. 7, we illustrate the authentication proce-
dure for scriptPubKey and scriptSig, where the scriptPubKey
is placed on the output of the previous transaction to declare
the resource’s ownership, and the scriptSig is on the input
of the current transaction to verify the resource’s ownership.

Fig. 8. Relationship between PITs and resources.

The scriptSig contains both consumer’s signature and a public
key, which are first pushed onto the stack. To verify these two
items, the corresponding scriptPubKey, consisted of a hash
of the consumer’s public key and four opcodes, OP_DUP,
OP_HASH160, OP_EQUALVERIFY, and OP_CHECHSIG,
are sequentially pushed and executed onto the stack. Here,
the first three opcodes make sure that the hash of 〈PubK〉 in
scriptSig is equal to the 〈PubKHash〉, and then the signature
〈sig〉 is verified by the checked 〈PubK〉.

B. Access Policy Validation

In our framework, the access policy validation is an impor-
tant mechanism to prevent incorrectly submitted policies from
interfering with the other protected resources. In other words,
it is used to avoid a policy-maker or an attacker submitting
resource policies beyond their scope of management.

To implement this mechanism, each node must take strict
approaches to verify the validity of PIT during the process
of submitting PIT to the blockchain. According to the own-
ership between access policy and the corresponding protected
resources, the validation principles are defined as follows.

1) Policy’s Excludability: A policy can only be bound to
one specified resource that could be a file, folder, or
device.

2) Target’s Specificity: The target in the PIT must be able
to express the specified resource in the right way.

3) Ownership’s Verifiability: The creator of the PIT must be
the owner of the resource managed by the PIT’s policy,
i.e., the owner’s signature in the PIT must be verified
by the resource owner’s public key.

Note that, the validation principles of access policies can be
loosely or tightly restricted as needed.

In order to achieve the above principles, we introduce a
new resource representation structure to describe the pro-
tected resource. This structure contains the necessary resource
information, including the owner’s public key, all objects, and
attributes, for supporting the ABAC model. Fig. 8 demon-
strates how to implement these three principles by establishing
the relationship between PIT and resource representation
structure (in short resource).

1) Abiding by Principle 1), we make use of the URL to
point at the resource protected by the PIT’s policy.

Authorized licensed use limited to: Univ of Science and Tech Beijing. Downloaded on April 11,2022 at 12:07:37 UTC from IEEE Xplore. Restrictions apply.

CHEN et al.: POLICYCHAIN: DECENTRALIZED AUTHORIZATION SERVICE WITH SCRIPT-DRIVEN POLICY ON BLOCKCHAIN 5403

Fig. 9. Example of lifecycle of PIT from creation, through renovation to revocation.

2) According to Principle 2), the attributes of the resource
must in turn match the attr/value pairs of the PIT’s target
in terms of the object’s “matching regulations.”

3) Principle 3) may be satisfied by using the owner’s pub-
lic key stored in the resource to verify the signature in
the input-field vin of the PIT because only the owner’s
public key is able to validate the signature.

The third item is implemented by the authentication script
in Fig. 7. The aforementioned relationship supports many-
to-one mapping from policies to resources. For example, we
can establish various access policies for different subjects and
actions aiming at the same resource. Moreover, the access pol-
icy validation is one of the PAP’s responsibilities, but it will
be partly replaced by consensus protocol in our framework.
That is, after receiving PIT, each node in the IoT-ICS verifies
it according to three validation principles, and then the PIT
is finally appended into the blockchain if the validation result
can be consistent across all nodes through consensus protocol.

C. Access Policy Renovation and Revocation

The renovation and revocation mechanisms are the impor-
tant parts of access policy maintenance and management after
the policy is published into the blockchain. They are also very
significant to maintain the sustainability of the system.

Due to the immutability of data stored on blockchains, it is
not feasible to directly modify the access policies. This leads
us to adopt a transaction-based update mechanism for policy
modification. That is, new PIT transactions are submitted to
replace their previous records in blockchain. The advantage of
this update mechanism is that all the records will be preserved,
so that we can achieve tracking and auditing for access poli-
cies. Additionally, strict authentication must be performed to
ensure the security of the updating policy.

In Fig. 9, we show a simple example of the PIT’s life-
cycle, which includes three main stages: 1) policy creation;
2) renovation; and 3) revocation. To accomplish this, we keep
the format of PIT transaction unchanged, but change the state
value to indicate the stage of policy (create: 1, update: 2, and
revoke: 0). Besides, we make use of the PIT’s input-field vin
and the output-field vout to establish strict authentication for

context dependence between pre-and post-transactions. The
three stages of policy are described as follows.

1) In the stage of policy creation, the PIT must enforce the
ownership verification that checks whether the signature
script (scriptSig) in vin matches with the owner’s public-
key script (scriptPubKey) in resource as described in
Fig. 8. Moreover, the owner should reserve one public
key of either himself or the agent in the vout field for
future policy management.

2) Then, in the stage of policy renovation, either the owner
or the designated agent is allowed to update the policy
by submitting a new PIT transaction with his signature,
which should be verified by the reserved public key in
the previous PIT (see Fig. 7). Furthermore, the power of
policy renovation could be transferred to another agent
by setting his public key into the vout field, so that the
agents may be able to continue this processing.

3) Finally, in the stage of policy revocation, all previous
policies pointed by a new submitted PIT would be no
longer used only if the verifiable PIT’s author may set
the “state” to 0 in PIT.

In the above policy management, we adopt a more rigorous
authentication strategy for the resource’s owner and agent that
will significantly strengthen protection against policy forgery,
falsifying or tampering from identity thieves. Moreover, when-
ever the policy is updated, all nodes in the whole blockchain
need to verify the PIT’s state and the submitter’s signature.

D. Security Evaluation on Policychain

We now turn our attention to the security of policy stor-
age, evaluation, and management on the Policychain platform.
Without loss of generality, we assume that the protected
resources, called off-chain resources, are stored in client-side
servers or trusted cloud platforms, which are secure through
some elegant technologies. And, these servers or platforms are
trustworthy to fulfill the user-specified access requests comply-
ing with the on-chain policy decision-making [23]. Moreover,
the PIP could act as a trusted source of attribute values. In
addition, in our previous researches [24], [25], the Policychain
platform is applicable to the cryptographic ABAC mechanism,
which is called Crypto-ABAC.

Authorized licensed use limited to: Univ of Science and Tech Beijing. Downloaded on April 11,2022 at 12:07:37 UTC from IEEE Xplore. Restrictions apply.

5404 IEEE INTERNET OF THINGS JOURNAL, VOL. 9, NO. 7, APRIL 1, 2022

Fig. 10. Relationship among policy’s functional requirements, security
assurances, and security technologies.

We require that the security of our Policychain platform
must meet three typical functional requirements: 1) policy
storage; 2) policy evaluation; and 3) policy management. As
shown in Fig. 10, these three functional requirements can
be guaranteed from four basic security assurances, including
tamper resistance, correctness, consistency, and authenticity.
Here, correctness means that the behavior of policy stor-
age and evaluation conforms to the expected results, and
consistency indicates that all nodes joining the collabora-
tive evaluation and management policies could make the
same response to the same behaviors. Furthermore, these four
security assurances can be guaranteed by blockchain-related
security technologies [26]. We illustrate the details as follows.

1) Security of Policy Storage: The security requirement of
policy storage is to ensure that the policy transaction
stored in blockchain will not be tampered by the adver-
sary. This requirement is satisfied by the transaction
correctness and the storage reliability (fault tolerance)
based on the above security technologies. Specifically,
the blockchain adopts the hash functions (e.g., SHA-
256 and RIPMD-180) to construct a Merkel hash tree
of transactions and a singly hash link-table of blocks.
This can also ensure the integrity of PIT transactions in
the Policychain. Furthermore, the Crypto-ABAC scheme
is able to generate a secure representation of policy,
called cryptographic policy, against forgery, tampering,
and replaying attacks.

2) Security of Policy Evaluation: The security requirement
of policy decision-making is to ensure the consistency
and correctness of the decision results. That is, con-
sistency means the results of all honest nodes are the
same (but it is uncertain whether they are correct),
and correctness means the final decision result of the
attacked platform is the same as that of the trusted third
party without attack. In our platform, we utilize a cryp-
tographically verifiable method of the Crypto-ABAC
scheme to guarantee the validity of policy decision
making, and introduce the consensus protocol into the
policy decision-making process to provide fault toler-
ance for the final decision result. Since the consensus
protocols, such as PoW, PoS or PBFT, provide some
security properties [27], including agreement, termina-
tion, and validity, the correctness and consistency of
policy evaluation can be guaranteed.

3) Security of Policy Management: The security require-
ment of policy management heavily focuses on the
authenticity of the policy that is considered as the
foundation of forgery resistance in the lifecycle from
creation, renovation to revocation. To meet this require-
ment, we use Bitcoin’s elliptic curve digital signature
algorithm (ECDSA) based on the secp256k1 curve to
sign the PIT transactions. This signature offers the fea-
ture of authentication and nonrepudiation for the owner
or agent at the different PIT’s lifecycle stages. For avoid-
ing single node failure, we use the consensus protocol
along with the signature’s verification to ensure fault-
tolerance in the process of appending PIT onto the chain.
Therefore, the authenticity requirement can be guar-
anteed with two implementation techniques mentioned
above.

In Fig. 10, we offer a brief description of the relationship
among policy’s functional requirements, security assurances,
and security technologies. As shown, the security foundations
of our platform are mainly constructed on three primitives.

1) Cryptographic techniques, which involve the Crypto-
ABAC scheme with escrowed object encryption,
secure decision-making of dynamic policies, real-time
attribute tokens, and collision-resistant hash function
(CRHF) [26].

2) Cryptographic digital signature, e.g., ECDSA and
interactive incontestable signature (IIS) [28], which is
existential unforgeable under chosen message attacks
(EUF-CMAs).

3) Consensus protocol, which has the properties of fault-
and attack-tolerance that are implemented with N-
modular redundancy (NMR) and PBFT [20], [27].

In the above analyses, the attacker has the ability to com-
pletely control a single node and monitor the whole network,
and we do not impose any security obligation or limitation on
each node in the Policychain. However, we require that the
majority (e.g., more than 2/3) of nodes are honest according
to the security requirements of the consensus protocol. This
means that the adversary can only control the minority (e.g.,
at most 1/3) of the nodes under collusion attack, and can-
not manipulate other nodes’ communication except the nodes
he/she controls. In short, the above analyses show that our
framework has the ability to improve the protection of policy
storage, evaluation, and management by using blockchain and
cryptographic techniques in an IoT-ICS setting.

VII. PERFORMANCE EVALUATION FOR POLICYCHAIN

In this section, we evaluate the validity of the solution
under the experimental environment with a dozen nodes.
Moreover, we develop a prototype blockchain system built on
the open-source Bitcoin Core. Based on this, we run various
experiments to measure the performance on the Policychain
framework.

A. ICS-IoT Experimental Environment

We design a small experimental environment of ICS based
on IoT. As shown in Fig. 11, this ICS-IoT environment consists

Authorized licensed use limited to: Univ of Science and Tech Beijing. Downloaded on April 11,2022 at 12:07:37 UTC from IEEE Xplore. Restrictions apply.

CHEN et al.: POLICYCHAIN: DECENTRALIZED AUTHORIZATION SERVICE WITH SCRIPT-DRIVEN POLICY ON BLOCKCHAIN 5405

Fig. 11. Network topology of our Policychain system.

TABLE IV
RELATED PARAMETERS AMONG VARIOUS DEVICES IN OUR

EXPERIMENTS

of a core network and two sensor networks (called NetA and
NetB) located in three different geographical areas, as follows.

1) Core network consists of three full nodes, C1-3, which
are deployed in the cloud environment.

2) Sensor network NetA consists of five lightweight nodes,
A1-5, under the Ubuntu systems.

3) Sensor network NetB consists of five lightweight nodes,
B1-5, under the Raspbian systems.

In Fig. 11, we show the network topology of the blockchain
system deployed on ten Raspberry Pi nodes in two different
areas, i.e., NetA and NetB. By using the ZeroTier software, all
of the Raspberry Pi nodes are connected and integrated into
a unified virtual LAN to realize the interconnection between
the nodes.

In the experimental environment, the blockchain system is
deployed into 13 nodes. Among them, ten nodes in both the
NetA and the NetB are running on the Raspberry Pi-based
sensors. Exactly, we uses two kinds of Raspberry Pis: one is
the Pi-3 module with 4x ARM Cortex-A53 CPU, BCM-2387
chipset, and 1.2 or 1.4 GHz, the other is the Pi-4 module with
4x ARM Cortex-A72 CPU, BCM-2711 chipset, and 1.5 GHz.
In addition, three full nodes in the blockchain core network
are built on cloud server nodes with single 2.5-GHz Intel Xeon
Platinum 8269CY CPU. As shown in Table IV, we compare
some parameters of these three categories, e.g., hardware type,
processor, BogoMIPS, and architecture.

All nodes of the Policychain are built on Linux. The oper-
ating systems of two nodes (C1 and C2) in cloud are Ubuntu
16.04 and one node (C3) is Ubuntu 18.04. The Ubuntu kernel

of nodes in the NetA is Linux 4.15.0 or 5.4.0, and the Raspbian
kernel of nodes in the NetB is Linux 4.19.75 or 5.10.17. The
reason for adopting different operating systems is that we
expect to test the platform independence in our Policychain.

B. Blockchain Testbed

Our Policychain is in essence a permission consortium
blockchain, which maintains an access control layer to allow
certain actions to be performed only by certain identifiable par-
ticipants. Moreover, the Policychain supports multiple chain
structure (similar to multichain3) and cross-chain operations
to enhance the interoperability between two relatively inde-
pendent blockchains. On this basis, our experimental system
deploys four following chains.

1) Subject chain which registers the subject’s identity
attributes through subject registration transaction (SRT).

2) Object chain which establishes the object trusteeship
and realizes the registration of object’s attributes through
object escrow transaction (OET).

3) Policy chain which is responsible to policy management
and evaluation through PIT transaction described above.

4) Authorization chain which encapsulates the whole pro-
cess of decision making for access request through
access granted transaction (AGT).

The technical details among the above SRT, OET, and AGT
can be found in our previous works [24] and [25].

Our Policychain is developed and implemented on the mul-
tichain platform that uses Bitcoin as the underlying layer.
However, it adopts a customizable Round-Robin consensus
scheme, rather than PoW as in Bitcoin. On this basis, we addi-
tionally introduce a script engine to explain and execute the
specified syntax as mentioned above. In addition, the cross-
chain access adopts remote procedure call (RPC) for sending
data requests to different chains, and then the script engine
realizes the final logical decision of policies according to the
results returned by the RPC.

We use Apache JMeter that is a powerful automated testing
tool to evaluate the performance of our blockchain testbed. In
our experiments, the JMeter is developed to simulate multiuser
concurrent requests on the Raspberry Pi nodes distributed in
two different areas. In Table V, we show the experimental
results of subject, object, and policy chains through the tests of
60 concurrent transactions per second. The average response
time of the whole system is about 400 ms, and the subject
chain is the slowest chain due to the fact that it consumes a
lot of time for cryptographic authentication and key escrow.
In blockchain, the number of transactions executed per second
(called throughput or TPS) is a vastly important indicator to
represent the performance of the blockchain system. The total
throughput of our blockchain testbed is about 87.01 TPS and
the average is about 29 TPS for each chain. The reason for
low throughput is that the network bandwidth of the exper-
imental environment is very low (the average bandwidth of
data received and sent is about 23 and 66 kB/s, respectively).
However, it is enough to support general applications and our
system is stable enough to be tested by IoT devices.

3https://www.multichain.com

Authorized licensed use limited to: Univ of Science and Tech Beijing. Downloaded on April 11,2022 at 12:07:37 UTC from IEEE Xplore. Restrictions apply.

5406 IEEE INTERNET OF THINGS JOURNAL, VOL. 9, NO. 7, APRIL 1, 2022

TABLE V
PERFORMANCE TEST RESULTS OF THE BLOCKCHAIN TESTBED FOR SUBJECT, OBJECT, AND POLICY CHAINS

C. Policychain’s Transaction and Overheads

To evaluate the performance of our solution, we develop
a prototype system to implement our Policychain framework.
This system is constructed on the source code of XACML
and Bitcoin. Based on this prototype, we can evaluate the
performance of our framework from three aspects: 1) PSI;
2) execution for batch rules; and 3) the whole system testing.
Our developed prototype system consists of three parts.

1) The first part is the blockchain program, running on
each IoT node, that is extended from the source code
of Bitcoin Core. This program is implemented in C++
and has approximately 3500 more lines than the original
code.

2) The second part is the RS which is built on a file server
to simulate resource sharing services on the cloud. It
also plays the role of PEP for providing an interface to
format and enforce access requests.

3) The third part is the PIP server that is built on the rela-
tional database (MySQL) to store attributes and simulate
the behaviors defined in the XACML.

We send policy JSON request packets to the blockchain
system through the clients simulated by JMeter. As described
in Section VI-A, the policy stored in the PIT is represented by
the combination of target, condition, and rule. Commonly, the
target describes object information, condition indicates con-
dition identifier and rule represents rule identifier. Sending
different policies will lead to differences in the size of
transactions generated in the blockchain system.

We also design many experiments to check the size of the
PIT transaction generated in our ICS-IoT by sending policy
data packets with different number of conditions and rules.
Specifically, we fix the number of rules to 1, 3, and 5 in the
policy data packets, and then we investigate the relationship
between the number of conditions and the size of transactions
in the Policychain, respectively. As shown in Fig. 12, it is not
difficult to find that the number of conditions has a linear rela-
tionship with the size of transactions under the same number
of rules. Moreover, under the same number of conditions, the
larger the number of rules, the larger the size of transactions.

In Fig. 13, we show an PIT instance used in this pro-
totype. This transaction specifies a policy of the resource
whose URL is “medical01/server.store.org.” The policy can
match the “read/write” request that is enforced on the service
interface org.apache.pdfbox.pdfctrl. Also, the request should
satisfy the rule with three conditions, i.e., (object−id =
medical−record−001.pdf ∧ action−id = read) ∨ (faculty =

Fig. 12. Relationship between the size of transactions and the number of
conditions and rules.

Fig. 13. Example of the PIT.

doctor). Moreover, the input item of the transaction includes
the signature from the policy issuer and the output item
declares the owner or agent of the policy, as mentioned in
Fig. 9 of Section VI-C. The policy set used in the test is from
an open-source implementation of the XACML specification,
called Balana.4 We have converted 200 typical XML-formatted
policies into the JSON-formatted PIT transactions, in which
each policy has around two to five rules and each rule contains
at most ten attribute scripts.

D. Performance of Policy Script Interpreter

To evaluate the performance of the PSI, we randomly chose
50 policies with two rules from the above policy set and
repeated the decision-making process 100 times on every
policy. In this case, the time overheads of two algorithms,
evalRule() and evalPolicy(), are shown in Fig. 14 under two

4https://github.com/wso2/balana/tree/master/modules/balana-core

Authorized licensed use limited to: Univ of Science and Tech Beijing. Downloaded on April 11,2022 at 12:07:37 UTC from IEEE Xplore. Restrictions apply.

CHEN et al.: POLICYCHAIN: DECENTRALIZED AUTHORIZATION SERVICE WITH SCRIPT-DRIVEN POLICY ON BLOCKCHAIN 5407

Fig. 14. Performance of script algorithms under different policies and rules.

Fig. 15. Performance of batch attribute-script execution.

groups of different rules. Moreover, the error bars are used to
express the standard error for 100 tests.

As shown in Fig. 14, the mean executing time of algorithm
evalRule() is between 3 and 3.5 ms with a relatively small fluc-
tuation. In contrast, the meantime of algorithm evalPolicy()
is between 8 and 11ms, but it can be seen that the tested
policies can be divided into two groups: one group has only
one rule that needs to be executed and its average evaluation
time is 8 ms, and the other has two rules and its average
evaluation time is 11 ms. The reason is that, for the dif-
ferent rule-combining methods, e.g., “Permit-overrides” and
“Deny-overrides,” the number of the executed rules is uncer-
tain during the policy decision-making process, so that such
two groups have a striking difference (around 3 ms) on their
mean evaluation time which is approximately equal to that of
one rule.

E. Performance of Batch Attribute-Script Execution

Unlike the above testings with only two rules, we further
measure the performance of attribute-script execution. In this
test, the script algorithm evalRule() is evaluated by executing
rules with different number (from 1 to 100) of attribute scripts
[invoking evalScript()]. Generally, there are no more than 20
attribute scripts for a single rule, and accordingly 100 attribute
scripts in this test can cover most practical situations, and
exceed the general scale by three or four times. In addition,
we repeat the above execution 100 times on every rule to
reduce the test errors.

Fig. 15 shows the mean and variance of the test results for
the above batch attribute-script execution. In view of the trends
of the results, it is easy to find that the executing time of the
rule is directly proportional to the number of attributes. This

Fig. 16. Performance comparison of whole policy evaluation between
Policychain and other XACML implements.

is consistent with the description of the algorithm evalRule, in
which each of the attribute scripts should be executed once. To
improve the execution efficiency, we make a one-time process
to obtain all attribute values required by the rule from PIP,
and then, cache these values in the program context before
rule evaluation. This approach gets rid of the performance
degradation caused by frequent requests for attribute values.

F. Performance Comparison

We finally focus on the performance comparison of whole
policy evaluation among three different platforms, including
Balana, SUN XACML,5 and our Policychain. We randomly
pick up 20 policies from the above policy set, and then per-
form the decision-making process on each policy 50 times.
The test results and their corresponding trend lines are shown
in Fig. 16, where the horizontal ordinate is only the serial
number of the test policies, and there is no direct correlation
between each policy. The fitting line is just to highlight the
differences in the performance of those platforms.

As shown in Fig. 16, it can be seen that the execution time
(around 9 ms) of policy evaluation under the Policychain plat-
form is less than that of two other platforms (around 11 ms
for Balana and 15 ms for SUN XACML). We consider the
possible reasons as follows.

1) The parsing process of JSON-formatted policies takes
less memory and time than that of XML-formatted
policies in the other two platforms;

2) The policies expressed by scripting language can be
directly executed by the script interpreter, so that our
platform gets rid of the process of constructing a policy
decision tree which is needed in the other two platforms.

Note that, the above testings only take place on a single node
and the whole decision-making process should contain the
consensus verification of the final result on all nodes in the
network. Thus, the time cost is associated with the consensus
protocol in the system.

In summary, the testing results through three aspects indi-
cate that the policy evaluation on our prototype system
has better performance than the common XACML systems.
Thus, the Policychain can be seen as a more efficient and
easy-to-develop platform for the ABAC model in an IoT-ICS.

5http://sunxacml.sourceforge.net/index.html

Authorized licensed use limited to: Univ of Science and Tech Beijing. Downloaded on April 11,2022 at 12:07:37 UTC from IEEE Xplore. Restrictions apply.

5408 IEEE INTERNET OF THINGS JOURNAL, VOL. 9, NO. 7, APRIL 1, 2022

VIII. CONCLUSION

To reduce the risks of sensitive data leakage in IoT-
ICS, we use the blockchain inherent scripting language to
express the complex logic of ABAC/XACML policies and
apply the script interpreter to make a quick execution of the
access control policy. This script-based approach makes possi-
ble for highly available, autonomous, traceable authentication
services. However, there are still some aspects to be improved.
For example, the environmental attributes should be acquired
and verified in an automatic and dynamic way, so as to enhance
the flexibility of authentication. Moreover, a new authorization
service on smart contracts should be further studied because
this smart contract platform (Docker or virtual machine) has
stronger computing power than script engine.

REFERENCES

[1] S. Grüner, J. Pfrommer, and F. Palm, “RESTful industrial commu-
nication with OPC UA,” IEEE Trans. Ind. Informat., vol. 12, no. 5,
pp. 1832–1841, Oct. 2016.

[2] E. Yuan and J. Tong, “Attributed based access control (ABAC) for
Web services,” in Proc. IEEE Int. Conf. Web Services (ICWS), 2005,
pp. 561–569.

[3] W. Tolone, G.-J. Ahn, T. Pai, and S.-P. Hong, “Access control in col-
laborative systems,” ACM Comput. Surveys, vol. 37, no. 1, pp. 29–41,
2005.

[4] G. Demesure, M. Defoort, A. Bekrar, D. Trentesaux, and M. Djemai,
“Decentralized motion planning and scheduling of AGVS in an FMS,”
IEEE Trans. Ind. Informat., vol. 14, no. 4, pp. 1744–1752, Apr. 2018.

[5] M. Vallee, M. Merdan, W. Lepuschitz, and G. Koppensteiner,
“Decentralized reconfiguration of a flexible transportation system,” IEEE
Trans. Ind. Informat., vol. 7, no. 3, pp. 505–516, Aug. 2011.

[6] V. C. Hu, D. F. Ferraiolo, and D. R. Kuhn, “Assessment of access con-
trol systems,” U.S. Dept. Commerce, Nat. Inst. Stand. Technol., Rep.
NISTIR 7316, 2006.

[7] D. D. F. Maesa, P. Mori, and L. Ricci, “Blockchain based access con-
trol,” in Proc. IFIP Int. Conf. Distrib. Appl. Interoperable Syst., 2017,
pp. 206–220.

[8] G. Kappes, A. Hatzieleftheriou, and S. V. Anastasiadis, “Multitenant
access control for cloud-aware distributed filesystems,” IEEE Trans.
Dependable Secure Comput., vol. 16, no. 6, pp. 1070–1085,
Nov./Dec. 2019.

[9] F. Kelbert and A. Pretschner, “Data usage control for distributed
systems,” ACM Trans. Privacy Security, vol. 21, no. 3, pp. 1–32, 2018.

[10] Y. Xue, K. Xue, N. Gai, J. Hong, D. S. L. Wei, and P. Hong,
“An attribute-based controlled collaborative access control scheme for
public cloud storage,” IEEE Trans. Inf. Forensics Security, vol. 14,
pp. 2927–2942, 2019.

[11] A. Anderson et al., eXtensible Access Control Markup Language
(XACML) Version 1.0, OASIS, Burlington, MA, USA, 2003.

[12] M. Lischka, Y. Endo, and M. Sánchez Cuenca, “Deductive policies
with XACML,” in Proc. ACM Workshop Secure Web Services, 2009,
pp. 37–44.

[13] D. Diaz-Lopez, G. Dolera-Tormo, F. Gomez-Marmol, and
G. Martinez-Perez, “Managing XACML systems in distributed
environments through meta-policies,” Comput. Security, vol. 48,
pp. 92–115, Feb. 2015.

[14] Y. Demchenko, O. Koeroo, C. de Laat, and H. Sagehaug, “Extending
XACML authorisation model to support policy obligations handling in
distributed application,” in Proc. 6th Int. Workshop Middleware Grid
Comput., 2008, pp. 1–6.

[15] J. Peters, R. Rieke, T. Rochaeli, B. Steinemann, and R. Wolf, “A holis-
tic approach to security policies—Policy distribution with XACML over
COPS,” Electron. Notes Theor. Comput. Sci., vol. 168, pp. 143–157,
Feb. 2007.

[16] H. Jiang and A. Bouabdallah, “JACPoL: A simple but expressive JSON-
based access control policy language,” in Proc. IFIP Conf. Inf. Security
Theory Pract., 2017, pp. 56–72.

[17] D. D. F. Maesa, P. Mori, and L. Ricci, “A blockchain based approach
for the definition of auditable access control systems,” Comput. Security,
vol. 84, pp. 93–119, Jul. 2019.

[18] Y. Zhu, Y. Qin, Z. Zhou, X. Song, G. Liu, and W. C.-C. Chu,
“Digital asset management with distributed permission over blockchain
and attribute-based access control,” in Proc. IEEE Int. Conf. Services
Comput., 2018, pp. 193–200.

[19] D. Ferraiolo, R. Chandramouli, R. Kuhn, and V. Hu, “eXtensible access
control markup language (XACML) and next generation access control
(NGAC),” in Proc. ACM Int. Workshop Attribute Based Access Control,
2016, pp. 13–24.

[20] R. Zhang, R. Xue, and L. Liu, “Security and privacy on blockchain,”
ACM Comput. Surveys, vol. 52, no. 3, pp. 1–34, 2019.

[21] T. I. Kiviat, “Beyond bitcoin: Issues in regulating blockchain tranac-
tions,” Duke Law J., vol. 65, no. 3, pp. 569–608, 2015.

[22] G. Wang, “Improving data transmission in Web applications via the
translation between XML and JSON,” in Proc. 3rd Int. Conf. Commun.
Mobile Comput., 2011, pp. 182–185.

[23] L. M. Vaquero, L. Rodero-Merino, and D. Morán, “Locking the sky: A
survey on IaaS cloud security,” Computing, vol. 91, no. 1, pp. 93–118,
2011.

[24] Y. Zhu, Y. Qin, G. Gan, Y. Shuai, and W. C. Chu, “TBAC: Transaction-
based access control on blockchain for resource sharing with cryp-
tographically decentralized authorization,” in Proc. IEEE 42nd Annu.
Comput. Software Appl. Conf. (COMPSAC), vol. 1, 2018, pp. 535–544.

[25] Y. Zhu, R. Yu, D. Ma, and W. C.-C. Chu, “Cryptographic attribute-based
access control (ABAC) for secure decision making of dynamic policy
with multiauthority attribute tokens,” IEEE Trans. Rel., vol. 68, no. 4,
pp. 1330–1346, Dec. 2019.

[26] I. Giechaskiel, C. Cremers, and K. B. Rasmussen, “On bitcoin security
in the presence of broken cryptographic primitives,” in Proc. Eur. Symp.
Res. Comput. Security, 2016, pp. 201–222.

[27] V. Gramoli, “From blockchain consensus back to Byzantine consensus,”
Future Gener. Comput. Syst., vol. 107, pp. 760–769, Jun. 2020.

[28] Y. Zhu, K. Riad, R. Guo, G. Gan, and R. Feng, “New instant confirma-
tion mechanism based on interactive incontestable signature in consor-
tium blockchain,” Front. Comput. Sci., vol. 13, no. 6, pp. 1182–1197,
2019.

E Chen received the B.S. degree from the School
of Mathematics and Physics, University of Science
and Technology Beijing, Beijing, China, in 2013,
where she is currently pursuing the Ph.D. degree
with the Department of School of Computer and
Communication Engineering.

Her research interests include attribute-based
system and lattice cryptography.

Yan Zhu received the M.S. and Ph.D. degrees from
Harbin Engineering University, Harbin, China, in
2002 and 2005, respectively.

He is currently a Full Professor with the School
of Computer and Communication Engineering,
University of Science and Technology Beijing,
Beijing, China. He was an Associate Professor of
Computer Science with the Institute of Computer
Science and Technology, Peking University, Beijing,
China, from 2007 to 2013. His research interests
include cryptography, secure computation, and
network security.

Zhiyuan Zhou received the B.E. and M.E. degrees
from the School of Computer and Communication
Engineering, University of Science and Technology
Beijing, Beijing, China, in 2017 and 2020, respec-
tively.

His research interests include attribute based
access control and distributed ledger technology.

Authorized licensed use limited to: Univ of Science and Tech Beijing. Downloaded on April 11,2022 at 12:07:37 UTC from IEEE Xplore. Restrictions apply.

CHEN et al.: POLICYCHAIN: DECENTRALIZED AUTHORIZATION SERVICE WITH SCRIPT-DRIVEN POLICY ON BLOCKCHAIN 5409

Shou-Yu Lee (Member, IEEE) received the B.S.
degree in computer science from National Tsing Hua
University, Hsinchu, Taiwan, in 2010, and the M.S.
degree in computer science from Tunghai University,
Taichung, Taiwan, in 2012. He is currently pursu-
ing the Ph.D. degree with the University of Texas at
Dallas, Richardson, TX, USA, under the supervision
of Prof. W. E. Wong.

His current research interests include software
fault localization, context-sensitive computing, and
software risk analysis.

W. Eric Wong (Senior Member, IEEE) received the
M.S. and Ph.D. degrees in computer science from
Purdue University, West Lafayette, IN, USA, in 1991
and 1993, respectively.

He is a Full Professor and the Founding Director
of the Advanced Research Center for Software
Testing and Quality Assurance with Computer
Science, University of Texas at Dallas (UTD),
Richardson, TX, USA. He also has an appointment
as a Guest Researcher with the National Institute of
Standards and Technology, Gaithersburg, MD, USA,

an agency of the U.S. Department of Commerce. Prior to joining UTD, he was
with Telcordia Technologies (formerly Bellcore), Piscataway, NJ, USA, as a
Senior Research Scientist and the Project Manager in charge of Dependable
Telecom Software Development. He has very strong experience developing
real-life industry applications of his research results. His research focuses on
helping practitioners improve the quality of software while reducing the cost
of production. In particular, he is working on software testing, debugging,
risk analysis/metrics, safety, and reliability.

Prof. Wong is the Editor-in-Chief of IEEE TRANSACTIONS ON

RELIABILITY. In 2014, he was named the IEEE Reliability Society Engineer
of the Year. He is also the Founding Steering Committee Chair of the IEEE
International Conference on Software Quality, Reliability, and Security and
the IEEE International Workshop on Debugging and Repair.

William Cheng-Chung Chu (Senior Member,
IEEE) received the M.S. and Ph.D. degrees in
computer science from Northwestern University,
Evanston, IL, USA, in 1987 and 1989, respectively.

He is currently a Distinguished Professor with
the Department of Computer Science, Tunghai
University, Taichung, Taiwan, where he had served
as the Director of Software Engineering and
Technologies Center from 2004 to 2016 and as
the Dean of Research and Development office from
2004 to 2007. He was a Research Scientist with the

Software Technology Center, Lockheed Missiles and Space Company, Inc.,
Sunnyvale, CA, USA. In 1992, he was also a Visiting Scholar with Stanford
University, Stanford, CA, USA.

Dr. Chu was a recipient of the special contribution awards in both 1992
and 1993 and the PIP Award in 1993 at Lockheed Missiles and Space
Company, Inc. He is an Associate Editor for the IEEE TRANSACTIONS

ON RELIABILITY, the Journal of Software Maintenance and Evolution, the
International Journal of Advancements in Computing Technology, and the
Journal of Systems and Software.

Authorized licensed use limited to: Univ of Science and Tech Beijing. Downloaded on April 11,2022 at 12:07:37 UTC from IEEE Xplore. Restrictions apply.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Arial-Black
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /ComicSansMS
 /ComicSansMS-Bold
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FranklinGothic-Medium
 /FranklinGothic-MediumItalic
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Gautami
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /Helvetica
 /Helvetica-Bold
 /HelveticaBolditalic-BoldOblique
 /Helvetica-BoldOblique
 /Impact
 /Kartika
 /Latha
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaConsole
 /LucidaSans
 /LucidaSans-Demi
 /LucidaSans-DemiItalic
 /LucidaSans-Italic
 /LucidaSansUnicode
 /Mangal-Regular
 /MicrosoftSansSerif
 /MonotypeCorsiva
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /MVBoli
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Raavi
 /Shruti
 /Sylfaen
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /Times-Bold
 /Times-BoldItalic
 /Times-Italic
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Times-Roman
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Tunga-Regular
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /Vrinda
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZapfChanceryITCbyBT-MediumItal
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 200
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages false
 /ColorImageDownsampleType /Average
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 200
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Average
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 400
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Recommended" settings for PDF Specification 4.01)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

