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Abstract
In order to solve the problem of low efficiency and high energy consumption of the Proof-of-Work (PoW) consensus pro-
tocol in blockchain within a peer-to-peer network, some new protocols based on Verifiable Random Function (VRF) have 
emerged recently. However, these VRF-based consensus protocols do not actually give a concrete and efficient VRF con-
struction. In view of this, we present three simple and practical VRF constructions from the RSA hardness assumption, the 
Decisional Diffie-Hellman (DDH) assumption and the Leftover Hash Lemma (LHL) respectively, the output size of which is 
continuously reduced for the design of efficient consensus protocol in blockchain. We also give a complete security analysis 
of our VRF constructions. Furthermore, we show a specific application of our VRF constructions in the famous Algorand 
consensus protocol. We illustrate a general approach to integrate our VRF constructions with block structure in blockchain. 
Comparing with PoW-based mining, we demonstrate the detailed process of VRF-based consensus protocol. Meanwhile, 
three new opcodes are designed for the scripting system in blockchain to develop a script pair, scriptProof and scriptHash, 
which provides secure and efficient block verification. Finally, we evaluate the performance of our VRF constructions in 
terms of storage and computational overheads, and the experimental evaluation results show our VRF constructions can 
significantly reduce the computing power of consensus protocol in blockchain.

Keywords  Verifiable random function · Script instruction · Consensus protocol · Blockchain · Leftover hash lemma · 
Performance

1  Introduction

With the rapid development of e-commerce and digital 
finance, blockchain technology has been widely concerned 
in recent years [1]. Exactly, blockchain is a new applica-
tion mode of computer technology such as distributed data 
storage, peer-to-peer transmission, consensus mechanism 
and signature algorithm. As the underlying technology 
of Bitcoin, blockchain can be regarded as a decentralized 
public ledger. All committed transactions are recorded in 

this ledger and jointly maintained by all nodes without the 
control of any third-party organization. Meanwhile, once 
a transaction in blockchain is agreed by all nodes and is 
packaged in blockchain, it is recorded by all nodes together 
and cannot be tampered with. In addition, as a decentral-
ized ledger, blockchain records the input and output of each 
transaction, and can easily trace each transaction record 
through its chain structure. Therefore, blockchain has unique 
advantages of decentralization, tamper proof, traceability, 
etc, which is commonly considered as the cornerstone of 
building the trusted large-scale applications such as financial 
services [2], digital copyright [3], healthcare [4] and Internet 
of Things [5].

Consensus mechanism, that can make all nodes work 
together, is generally regarded as the core technology of 
blockchain. More precisely, nodes participate collabora-
tively in maintaining a trusted public ledger in chronologi-
cal order and most of them keep a complete ledger backup 
that must be exactly consistent with each other. Therefore, 
consensus mechanism enables to solve the problem of data 
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consistency between untrusted nodes in blockchain. Our 
work is of great significance for improving the security 
and efficiency of peer-to-peer networks.

1.1 � Motivation

Bitcoin, as the origin of blockchain, is the earliest and 
most famous platform of blockchain. Satoshi Nakamoto 
first introduced a Proof-of-Work (PoW) consensus proto-
col in Bitcoin [6], and it has been extensively employed 
in most applications of blockchain. Generally speaking, 
the PoW-based protocol should participate in solving a 
complex computational puzzle together, in which all nodes 
are required to compete for the privileges to propose new 
blocks by their computing power [7]. Any node with 
higher computing power might have greater chance to be 
a block proposer.

The SHA-256 function y = Hash(x) serves as the compu-
tational puzzle in the PoW-based protocol, and it is essen-
tially a Random Function (RF) with collision resistance. RF 
enables to generate a random output y on given input x. In 
the PoW, a target threshold T should be set to the binary 
form, i.e., T = 0n||R , where 0n denotes that the first n bits 
of T are all 0, and R indicates that the remaining bits are 
random values. On this basis, nodes should try different x 
repeatedly and then calculate the RF’s output y until y ≤ T  
holds. The first node to reach the target threshold T has a 
greater advantage to obtain the privilege to propose a new 
block. So, the cost of malicious proposers destroying the 
system will be greatly increased since they must do a large 
number of computations (or control more than 51% of net-
work’s total computing power), so as to guarantee the secu-
rity of the consensus process.

However, the PoW-based protocol has some limitations 
[8] in practical application. Taking Bitcoin as an example, 
we demonstrate main limitations as follows:

•	 High energy consumption. For proposing new blocks, 
nodes must do a large number of computations to find 
the solution of the computational puzzle, which results 
in huge energy consumption.

•	 Transaction delay. There exists a transaction delay in Bit-
coin. Nodes should wait for the generation of the next six 
blocks in order to confirm the credibility of each block, 
the process of which will takes around one hour. So, the 
transaction throughput is not high.

•	 Centralization of computational power. Mining pools 
generally have advantages of winning the privileges to 
propose new blocks than individuals. Therefore, mining 
pools can dominate the processes of building new blocks 
in Bitcoin, which violates the decentralization of block-
chain.

In 2016, Turing Award winner Gilad et al. [9] proposed a 
new VRF-based consensus protocol called Algorand, which 
aims to tackle the problem of low efficiency and high energy 
consumption of the PoW-based protocol. Besides, other 
new protocols based on Verifiable Random Function (VRF) 
[10] have been also introduced recently. VRF is essentially 
a (pseudo) RF with a non-interactive verifiable function. 
Informally, VRF is such an effective function that it takes a 
string x and a secret key sk as inputs and generates a random 
output y = F(sk, x) with a corresponding proof � = G(sk, x).

A standard VRF is required to satisfy the following prop-
erties. Firstly, given sk, the output y of F(sk, x) should be 
unique and computable on x. Secondly, the output y needs 
to be random, i.e., an effective attacker, without knowing sk, 
can not distinguish the output y from a random value even 
if it is given oracle queries of F(sk, x) and G(sk, x) on any 
other point. Finally, anyone who holds the proof � along 
with pk can verify that the output y is indeed calculated 
correctly on x.

According to the work of Gilad et al. [9], it can be seen 
that VRF has some advantages to design efficient consensus 
protocols since the unique properties of VRF. We now illus-
trate the main advantages as follows:

•	 Easy to calculate. Nodes need only to perform VRF func-
tion y = F(sk, x) once, and then compete for the privi-
leges to propose new blocks by the distance between the 
VRF’s output y and the preset target threshold T. This 
means that nodes with shorter distance should have more 
chances to win the privileges. So, VRF has ability to 
avoid the repeated calculation processes in the PoW-
based protocol.

•	 Easy to verify. There exists a proof function � = G(sk, x) 
in VRF. The proof � is used to verify the correctness of 
the output y on given x. Nodes who hold � and pk can 
easily verify that the new block is indeed built by the pro-
poser who holds the corresponding sk. So, VRF is easy 
to confirm the privilege of the proposer and the validity 
of the block simultaneously.

•	 Suitable for consensus protocols. VRF has already been 
integrated into some new protocols such as Algorand 
[9], Ouroboros-Praos [11] and Dfinity [12]. These VRF-
based protocols aim to improve consensus performance 
from the aspect of energy consumption, scalability of 
blockchain, transaction throughput, etc. Therefore, VRF 
is very suitable for designing efficient consensus proto-
cols.

However, the concrete and efficient VRF constructions 
are not given in the existing VRF-based protocols, such as 
Algorand [9], Ouroboros-Praos [11] and Dfinity [12]. Mean-
while, almost known VRF functions are based on Bilinear 
maps, which are constructed on elliptic curves. Comparing 
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with the elliptic curve cryptosystem used in existing block-
chains, the protocol design based on VRF with Bilinear 
maps is more complex, and the mathematics backgrand is 
more strict for professional developers. Therefore, in this 
paper, we aim to present some simple and practical con-
structions that are suitable for design of efficient consensus 
protocols.

1.2 � Related work

In 1999, the concept of VRF was first introduced by Micali, 
Rabin and Vadhan [10]. They proposed a VRF construction 
based on the RSA assumption from a verifiable unpredict-
able function, which employed a Goldreich-Levin hardcore 
bit transformation [13]. Dodis et al. [14] gave a more effi-
cient VRF construction on bilinear groups with small input 
spaces. This construction was simple without inefficent 
Goldreich-Levin transformation, and it was provably secure 
under a decisional bilinear Diffie-Hellman inversion assump-
tion. Hohenberger et al. [15] presented a family of VRFs on 
bilinear groups, whose security relied on a decisional Diffie-
Hellman exponent assumption. The input space of this kind of 
VRF reached exponentially large size by applying a collision-
resistant hash function. Hofheinz et al. [16] constructed the 
first VRFs which efficiently achieved both exponential-sized 
input space and full adaptive security under a non-interactive, 
constant-size assumption. Based on the work in [16], Kohl 
[17] proposed a VRF construction with short proofs, which 
also satisfied exponential-sized input space and full adaptive 
security. They employed partitioning techniques of Bitansky 
[18] to effectively reduce the proof size to a logarithmic num-
ber of group elements.

Some researches focused on extending the notion of VRF 
to construct some variants of VRF. Brackerski et al. [19] 
defined weak VRFs whose pseudorandomness was required 
to hold only for randomly selected inputs. In addition, they 
gave two concrete constructions of weak VRFs from certified 
trapdoor permutations and a computational Diffie-Hellman 
assumption, respectively. Fuchsbauer [20] extended the 
notion of VRF to constrained VRFs and showed two instan-
tiations, i.e., bit-fixing VRF and circuit-constrained VRF. 
Recently, Wang et al. [21] presented a family of Condition-
ally VRFs and showed a direct construction with Boolean 
access constraints. Liang et al. [22] defined static aggregate 
VRFs and presented a construction over bit-fixing sets with 
respect to product aggregation.

Other VRF constructions based on basic cryptography 
primitives were presented in recent years. Goyal et al. [23] 
demonstrated a generic way of building VRFs from more 
basic cryptographic primitives, such as non-interactive 
witness-indistinguishable proofs (NIWIs), admissible hash 
functions (AHFs), perfectly binding commitments and 
constrained pseudorandom functions. They also provided 

new constructions of non-interactive commitments from 
Learning with Errors (LWE) and learning parity with noise 
assumptions. Bitansky [18] presented new VRF construc-
tions from verifiable function commitments and constrained 
pseudorandom functions, which relied on NIWIs proof sys-
tem to achieve adaptive security. Brunetta et al. [24] pro-
vided their insights on constructing a lattice-based simulat-
able VRF using non interactive zero knowledge arguments 
and dual-mode commitment schemes, and they pointed out 
the main challenges that need to be addressed on it. Abraham 
[25] proposed a post-quantum VRF scheme from ring signa-
tures using ring LWE and proved its security against known 
quantum attacks and quantum oracles. Jager et al. [26] con-
structed a new VRF scheme using computational AHFs, and 
it is currently the most efficient VRF with full adaptive secu-
rity in standard model. The variants of AHFs-based VRF 
also include Jager’s scheme under balanced AHFs [27] and 
Yamada’s scheme under modified AHFs [28].

1.3 � VRF‑based consensus protocols

Recently, some new protocols based on VRF have emerged 
and been widely employed in practice. Several typical VRF-
based protocols are elaborated as follows:

•	 Algorand protocol [9], is a novel cryptocurrency 
designed to confirm transactions in about one minute. It 
employs a new Byzantine agreement protocol to reach a 
consensus, which takes a committee as its basic opera-
tion unit. Meanwhile, the core of the protocol is VRF 
technique, which is responsible for randomly selecting 
proposer and verifier committees in a private and non-
interactive way.

•	 Ouroboros-Praos protocol [11], is also a VRF-based con-
sensus protocol for the adoption of a new cryptocurrency 
called Cardano. Time is divided into several epochs, each 
of which is composed of multiple slots. According to the 
stake distributions of stakeholders in each epoch, this 
protocol uses VRF to randomly select a slot leader from 
the stakeholders, so that the slot leader is qualified to 
publish a block.

•	 Dfinity protocol [12]. Similar to Algorand, this protocol 
is also operated under a committee. And it contains a 
decentralized random beacon, which actually employs 
VRF and BLS threshold signature scheme [29] to gen-
erate an unpredictable random seed. Furthermore, the 
seed is not only responsible for creating block-makers 
and notary committees, but also for determining the pri-
ority ranking of committee members.

From these work, it can be seen that VRF has made some 
progresses in the design of blockchain consensus protocols. 
Precisely speaking, VRF plays an important role in selecting 
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a block proposer based on the randomness and public verifi-
ability of VRF. In addition, VRF has also been applied into 
a new blockchain system called DEXON [30] with Proof-
of-Participation (PoP) protocol and a novel Verifiable Byz-
antine Fault Tolerance (VBFT) [31] hybrid algorithm in 
Ontology platform, respectively.

1.4 � Our contribution

We aim to construct practical and efficient VRF construc-
tions which can be used to improve the performance of 
consensus protocol in blockchain. We summarize the main 
contributions of our work in this paper as follows:

•	 We propose three simple and practical VRF constructions 
in order to reduce the VRF’s output size as much as pos-
sible. Our VRF construction over RSA (VRF-RSA) is 
inspired by one-way permutation built on RSA. Another 
two VRF constructions, VRF-DDH and VRF-LHL, are 
based on the Decisional Diffie-Hellman (DDH) assump-
tion and Leftover Hash Lemma (LHL) respectively, where 
LHL enables an universal hash function to achieve an effec-
tive randomness extractor. As a result, the VRF’s outputs 
y and � are continuously improved, e.g., the output size of 
VRF-LHL is only 64 bytes for 128-bit security strength. 
The computational overheads of Prove and Verify in VRF-
DDH can be reduced to the millisecond level. Moreover, 
we give the full security proofs of our constructions.

•	 Taking VRF-RSA as an example, we provide a general 
approach to integrate our VRF constructions with block 
structure in blockchain. By replacing PoW-based min-
ing with VRF-based consensus protocol, the VRF-RSA 
is applied into cryptographic sortation algorithm in the 
famous Algorand [9] to improve the performance of con-
sensus protocol. Besides, three new opcodes are designed 
by extending the script interpreter of blockchain, and 
then we develop a script pair, scriptProof and scriptHash, 
under our VRF constructions to provide secure and effi-
cient block verification. Moreover, our experimental 
evaluation results show the proposed VRF constructions 
can significantly reduce the computing power of consen-
sus protocol in blockchain.

1.5 � Organization

The rest of this paper is organized as follows. We introduce some 
basic concepts and preliminaries for VRF in Sect. 2. Next, we 
present three simple and practical VRF constructions and pro-
vide the full security analysis of our constructions in Sect. 3. In 
Sect. 4, we compare the performance of our VRF constructions 
with previous ones. In Sect. 5, we show a specific application of 
VRF in blockchain and VRF’s script implementation and per-
formance evaluation. Finally, we conclude this paper in Sect. 6.

2 � Preliminaries

2.1 � Verifiable random function

VRF was first introduced by Micali, Rabin and Vadhan. 
Informally, a VRF acts like a (pseudo) RF, but also contains 
a proof of correctness for its output. We now briefly recall 
the following standard definition of VRF.

Definition 1  (Verifiable Random Function) Given a func-
tion family F(⋅, ⋅) ∶ {0, 1}in(�) → {0, 1}out(�) , where in(�) and 
out(�) are polynomials in security parameter � . we say that 
it is a Verifiable Random Function if there exists algorithms 
(Setup, Prove, Verify) such that 

1.	 �����(1�) takes as input the security parameter � , and 
outputs a pair of keys (sk, pk), where sk is the secret key 
and pk is the public key;

2.	 �����(sk, x) takes sk and a string x ∈ {0, 1}in(�) as inputs, 
outputs a pair (y,�) ← (F(sk, x),G(sk, x)) , where y is a 
function value and � is a proof of correctness;

3.	 ������(pk, x, y,�) takes pk, x ∈ {0, 1}in(�) , y ∈ {0, 1}out(�) 
and � as inputs, and outputs a bit. It verifies the correct-
ness of y on given x by using the proof � and pk. It out-
puts 1 if the verification succeeds, and 0 otherwise.

Formally, we require that VRF holds the following security 
properties: 

1.	 �����������. For all pairs (pk, sk) ∈ Setup(1�) and all 
strings x ∈ {0, 1}in(�) , if (y,�) = Prove(sk, x) , there exists 
a negligible polynomial � such that 

2.	 ����������. For all pairs (pk, sk) ∈ Setup(1�) and 
all strings x ∈ {0, 1}in(�) , there does not exist a tuple 
(y1, y2,�1,�2) such that 

 for a negligible polynomial �.
3.	 Pseudorandomness1.For all PPT distinguishers D, there 

exists a negligible polynomial � such that 

(1)Pr
[
Verify(pk, x, y,�) = 1

]
1 − �(�).

(2)Pr

[
y1 ≠ y2

|||||
Verify(pk, x, y1,�1) = 1,

Verify(pk, x, y2,�2) = 1

]
≤ �(�)

1  Randomness: We say that F(sk,  x) and {0, 1}out(�) are statistically 
indistinguishable if there exists a negligible statistical difference � 
such that
1

2

∑
�
��Pr[F(sk, x) = �] − Pr[{0, 1}out(�) = �]�� ≤ �(�).
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More clearly, we illustrate the processing structure of 
VRF in Fig. 1, which consists of Prove and Verify modules. 
As shown in the figure, the processing can be divided into 
evaluation and verification stages. In the evaluation stage, 
the Prove module is used to evaluate the value y and the 
proof � . Subsequently, the Verify module is responsible for 
verifying the correctness of the value y with the proof � and 
pk in verification stage. It outputs 1 if the verification is suc-
cessful, and 0 otherwise.

2.2 � Hardness problems and complexity 
assumptions

We now give the hardness problems and complexity assump-
tions used in our VRF constructions. Hereafter, A is denoted 
as a probabilistic polynomial time (PPT) algorithm whose 
running time is bounded by the polynomial in the security 
parameter �.

We start with the definitions of RSA problem and its 
hardness assumption in detail. Formally, the RSA problem 
in ℤN is defined as follows:

Definition 2  (RSA Problem) Given {e,N} and a ran-
dom y ∈ ℤN  , an algorithm A computes x such that 
xe ≡ y mod N  , where positive integer N is a product of 
two large distinct odd primes, p and q, and e is a randomly 
chosen positive integer less than and relatively prime to 
�(N) = (p − 1)(q − 1).

We define by AdvRSA
e,N,y

(A) the advantage of an algorithm 
A in solving the RSA problem as

The RSA assumption in ℤN is the following.

(3)
|Pr[D(1� ,F(sk, x)) = 1]

−Pr[D(1� , {0, 1}out(�)) = 1]|| ≤ �(�).

(4)AdvRSA
e,N,y

(A) = Pr[A(y,N, e) = x|xe ≡ y mod N ].

Definition 3  ((t, �)-RSA Assumption) We say that (t, �)-RSA 
assumption holds in ℤN if there is no t-time algorithm A has 
advantage at least � in solving the RSA problem in ℤN , i.e.,

Next, let � be a group of prime order p and g be its gen-
erator. We state the DDH problem and its hardness assump-
tion in the group � in a formal way as follows:

Definition 4  (Decisional Diffie-Hellman Problem) Given 
a tuple (g, g� , g�) as input, an algorithm A distinguishes g�� 
from a random value T in � , where � and � are randomly 
chosen in ℤq of large prime order q, and q|p.

We define by AdvDDH
g,�,�

(A) the advantage of an algorithm 
A in solving the DDH problem as

Correspondingly, the DDH assumption in the group � of 
prime order p is the following.

Definition 5  ((t, �)-DDH Assumption) We say that (t, �)-DDH 
assumption holds in � if there is no t-time algorithm A has 
advantage at least � in solving the DDH problem in � , i.e.,

2.3 � Universal hashing and leftover hash lemma

One of our VRF constructions relies on Leftover Hash 
Lemma (LHL) [32]. LHL demonstrates that an universal 
hash function is almost a good randomness extractor. Next, 
we briefly recall the definitions of the universal hashing and 
LHL, respectively.

Definition 6  (�-Universal Hashing) A family H of (deter-
ministic) functions h ∶ X → {0, 1}v is a called �-universal 
hash family (on space X  ), if for any x1 ≠ x2 ∈ X  , we have 
Prh∈H[h(x1) = h(x2)] ≤ � . We say that H is universal when 
� = 1∕2v.

Lemma 1  (Leftover-Hash Lemma, LHL) Assume that the 
family H of functions h ∶ X → {0, 1}v is a 1+�

2v
-universal hash 

family. Then the extractor Ext(x;h)
def
= h(x) is an (m, �)

-extractor ,  where h is  uni form over H and 
� =

1

2

√
� +

2v

2m
=

1

2

√
� +

1

2L
 (recall, L = m − v is the entropy 

loss). In particular, 1+3�
2

2v
-universal hash functions yield 

(v + 2 log(1∕�), �)-extractors.

(5)AdvRSA
e,N,y

(A) ≤ �.

(6)
AdvDDH

g,�,�
(A)

= ||Pr[A(g, g� , g� , g��) = 1] − Pr[A(g, g� , g� , T) = 1]||.

(7)AdvDDH
g,�,�

(A) ≤ �.

Fig. 1   The processing structure of VRF
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3 � Constructions of verifiable random 
function

In this section, we give three concrete VRF constructions, 
whose security are based on the RSA assumption, the 
DDH assumption and LHL lemma, respectively. In order to 
improve the performance in VRF-based consensus proto-
col, the storage overheads of the proof � have fallen stead-
ily among three VRF constructions. Moreover, we provide 
complete security analysis of our three VRF constructions.

3.1 � VRF construction over RSA

We here illustrate the VRF construction over RSA (VRF-
RSA). Let Hash be a hash function which maps an element 
in ℤN to an element in ℤN , and the operator ⊕ is denoted as 
a XOR operation. Our VRF-RSA that contains three poly-
nomial-time algorithms is as follows: 

1.	 �����(1�). It takes the security parameter � as input, and 
then outputs the secret key sk = {d,N} and the public 
key pk = {e,N}.

2.	 �����(sk, x). It takes an integer x and the secret key sk as 
inputs, and then generates a value y with a correspond-
ing proof � , which are defined as 

3.	 ������(pk, x, y,�). It verifies whether the value y is cor-
rectly computed on given x by using the proof � and the 
public key pk. Specifically, this algorithm will check 

(8)
{

y = F(sk, x) = Hash(𝜋 ⊕ x),

𝜋 = G(sk, x) ≡ xd mod N.

 If two above equations hold, the algorithm outputs 1, 
and 0 otherwise.

For clarity, the processing structures of Prove and Verify 
modules for VRF-RSA are illustrated in Fig. 2, respec-
tively. In Fig. 2a, we display the processing of the Prove 
module in evaluation stage. Obviously, the forward pro-
cessing is entirely consistent with its inverse. Similarly, 
the processing of the Verify module in verification stage 
is shown in Fig. 2b. It is easy to see that the top half 
of the processing structure for the Verify module is the 
same with the Prove module in Fig. 2a. So the two mod-
ules should have common algorithm. Subsequently, the 
Verify module will check whether x1 = x and y1 = y hold 
simultaneously in oder to verify the correctness of y on 
given x.

Formally, we provide the Algorithm 1 to illustrate the 
common processing of Prove and Verify modules, where 
Mod() is denoted as a modular function and BitXor() is 
denoted as a XOR function. The inputs of this algorithm are 
� and � , and its outputs are � and � . However, both inputs 
and outputs are actually different in these two modules: the 
inputs of the Prove module are x and d, and its outputs are y 
and � . But for the Verify module, the inputs are � and e, and 
its outputs are y and x. Therefore, four variants, � , � , � and � , 
represent different meanings, respectively. Specifically, two 
variants, � and � , represent x and d in the Prove module, as 
well as two outputs, � and � , indicate y and � , respectively. 
Similarly, in the Verify module, four variants, � , � , � and � , 
represent � , e, y and x, respectively.

(9)
{

𝜋e mod N ≡ x,

Hash(𝜋 ⊕ x) = y.

Fig. 2   The processing structures 
of Prove and Verify modules for 
VRF-RSA

(a) (b)
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We now prove that our VRF-RSA satisfies the required 
security properties, as follows: 

1.	 �����������. For all pairs of keys (pk = {e,N}, sk =

{d,N}) ∈ Setup(1�) and any integer x, from the defi-
nitions of F(sk, x) and G(sk, x), it follows immedi-
ately that �e mod N ≡ (xd mod N)e mod N ≡ x and 
Hash(𝜋 ⊕ x) = y . In other words, the value y enables to 
be deterministically obtained from the proof � . We have 
thus Verify(pk, x, y,�) = 1.

2.	 ����������. Consider the public key pk = {e,N} , an 
integer x, and pairs of values (y�,��) ∈ (ℤN ,ℤN) that 
satisfy Verify(pk, x, y�,��) = 1 , for both � ∈ {1, 2} . 
It suffices to show that y1 = y2 . Specifically, the 
first verification equation yields �e

�
mod N ≡ x , 

which by the properties of RSA signature scheme 
implies that �� ≡ xd mod N  , as an one-way permuta-
tion, for both � ∈ {1, 2} . Subsequently, the second 
verification equation yields y𝜌 = Hash(𝜋𝜌 ⊕ x) =

Hash(xd mod N ⊕ x) for both � ∈ {1, 2} , which implies 
y1 = Hash(xd mod N ⊕ x) = y2 . It means that there is 
only one unique y on given x that can be proved to be 
valid with the proof �.

3.	 ����������������. Regarding the proof of pseudoran-
domness property, we present the following Theorem 1.

Theorem 1  Suppose the ( t, �)-RSA assumption holds in ℤN . 
Our VRF-RSA is a (t�, �)-secure VRF, where t� ≈ t , i.e., there 
not exists a PPT adversary can distinguish VRF’s output 
from a random value in t′-time with advantage � , thereby 
breaking the RSA assumption.

Proof. For the sake of contradiction, suppose there exists 
an adversary A , running in time t′ , can distinguish the func-
tion F(sk, x) from a random value in ℤN with non-negligible 
probability � , then we will build a simulator B to break the 
RSA assumption with non-negligible probability by using 
the advantage of A.

Setup. B generates the public key pk = {e,N} and the 
secret key sk = {d,N} , then sends the public key pk to 
A . Regarding a challenge z∗ which A wants to invert, B 
processes it as follows:

–	 If the bit length of z∗ is strictly less than that of N, 
then define z� = z∗;

–	 Otherwise, try repeatedly a random � ∈ ℤN until the 
bit length of z∗�e mod N is less than that of N, then 
define z� ≡ z∗�e mod N.

Oracle Queries. Without loss of generality, we assume 
that A makes at most Q queries and never repeats que-
ries. Once A issues a query on xi (1 ≤ i < Q) to B , then B 
responses to the query xi as follows:

–	 If the query xi = x∗ ( x∗ is a challenge query), then B 
outputs fail;

–	 Otherwise, B processes as follows: 

1.	 define xi = zi , then response with zi;
2.	 define �i = ci , then response with ci;
3.	 draw a uniformly random value ui , program 

Hash(ci ⊕ zi) = ui and yi = ui , then response 
with ui.

 Thus, B will eventually send {zi, ci, ui} as response values 
of the query xi to A in this stage.
Challenge Query. A issues a challenge query on x∗ which 
corresponds to the inverse challenge z∗ . If the challenge 
query is different from x∗ , then B outputs fail. Otherwise, 
B certainly outputs z� ≡ (�∗)e mod N  , where �∗ is the 
RSA inverse of z′ . Besides, B defines z� ≡ z∗�e mod N . 
So the RSA inverse of z∗ enables to be obtained by divid-
ing the answer with � , i.e., the RSA inverse of z∗ is �∗∕�.
Guess. Eventually A outputs its guess b′ , and then B out-
puts the same bit b′ as its guess.
Success probability. We now analyze the probability that 
B wins the game. Since queries to Hash are responded 
consistently if Hash is programmed on the query and are 
answered randomly otherwise, so the probability that the 
Hash query table contains �∗ , which is the RSA inverse of 
z′ , is � . We have thus completed the proof of Theorem 1.

In literature [33], Goldberg et al. also proposed an RSA-
based VRF scheme (called GVPR-VRF). In the aspect of 
construction, the output expression of GVPR-VRF is defined 
as y = Hash(�) , but our VRF-RSA scheme improves it into 
y = Hash(𝜋 ⊕ x) . This is the main difference between these 
two schemes. Aiming to the difference, we analyze these two 
schemes from the aspects of strict expression and forgery 
resistance.

Firstly, considering x is the input of F(sk, x), the output y 
of F(sk, x) should be correlated with x according to the VRF 
definition. From the expression y = Hash(�) in GVPR-VRF, 
the output y does not establish a direct correlation with x, but 
employs a proof � to establish the indirect correlation with x. 
Instead, the expression y = Hash(𝜋 ⊕ x) of VRF-RSA binds 
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� and x by using XOR operation, so as to establish the direct 
correlation between x and y. Considering such a direct cor-
relation implies the uniqueness of VRF, it indicates that our 
VRF-RSA complies strictly with the VRF definition.

Secondly, VRF forgery is a serious attack that an adver-
sary finds pairs (x, y,�) to pass VRF verification after learn-
ing some valid instances. According to the expressions 
y = Hash(�) and y = Hash(𝜋 ⊕ x) , it is easy to see that the 
forgery attack may originate from hash collision for these 
two schemes. Since the hash function is a mapping from 
large input space to small output space, the hash collision is 
inevitable, i.e., there must exist two distinct inputs to pro-
duce identical hash value. For y = Hash(�) in GVPR-VRF, 
we assume that an adversary finds two distinct proofs, � 
and �′ , which produce a hash collision (e.g., SHA-256 has 
been attacked by [34]). According to x = �e mod N  and 
x� = ��e mod N , the adversary can easily find two distinct 
VRF inputs x and x′ corresponding to the identical output 
y. Thus, any adversary, without knowing the private key sk, 
can forge two valid instances, (x, y,�) and (x�, y,��) , that 
pass VRF verification as long as the adversary finds a hash 
collision.

On the other hand, the output expression of VRF-RSA is 
defined as y = Hash(𝜋 ⊕ x) = Hash(xd ⊕ x) . Assuming two 
distinct inputs, z and z′ , are found to produce a hash colli-
sion, an adversary tries to find x, x′ to meet z = xd ⊕ x and 
z� = x�d ⊕ x� . Thus, we easily get x = (z⊕ x)e mod N and 
x� = (z� ⊕ x�)e mod N . Further, the adversary needs to solve 
these two equations if he wants to find two distinct VRF inputs 
x and x′ corresponding to the identical output y. Let r = z⊕ x 
and r� = z� ⊕ x� . The above equations are transformed into 
z⊕ r = re mod N and z� ⊕ r� = r�e mod N . However, it is 
difficult to solve r and r′ to get x and x′ , even if sieve method 
needs O(

√
N) computational complexity to solve it2. In other 

words, for an effective VRF forgery attack, the adversary 
needs to not only find a hash collision, but also solve the above 
problem about O(21536) operations for N is 3072 bits. So, 
VRF-RSA has stronger forgery resistance than GVPR-VRF.

3.2 � VRF construction over DDH

The size of the proof � in VRF-RSA is too large since its size 
is affected by the security strength of RSA. So, we propose the 
VRF construction over DDH (VRF-DDH) with shorter proof. 
Let H1 be a hash function that maps an element in � of prime 
order p and an element in ℤq of prime order q to an element 
in ℤq , and let H2 be a hash function which maps an element in 
ℤq to an element in � . Our VRF-DDH is as follows: 

1.	 �����(1�). It takes the security parameter � as input, and 
outputs the secret key sk = {g, p, q, h = g� , �, �} and the 
public key pk = {g, p, q, h = g� , � = g�} , where � and � 
are randomly chosen in ℤq.

2.	 �����(sk, x). It takes an integer x and the secret key sk as 
intputs, and then generates a value y with a correspond-
ing proof � . Here we firstly define the proof � as follows:

•	 Compute a hash function c = H1(h
� , x);

•	 Compute z ≡ � + c∕� mod q;
•	 Define the proof � as a binary tuple 

 where the size of � is 2 log(q) bits.
	    Next, we define the value y for the integer x as 

3.	 ������(pk, x, y,�). It verifies whether the value y is correctly 
computed on given x with the proof � and the public key pk. 
Specifically, two verification equations are given as follows: 

 If two above verifications succeed, this algorithm out-
puts 1, and 0 otherwise.

Subsequently, the Algorithms 2 and 3 are presented to clearly 
illustrate the processing of the Prove and Verify modules, 
respectively. Obviously, the two algorithm processes are rela-
tively simple and need only perform two hash operations. Thus, 
our VRF-DDH should have low computational overhead.

(10)� = G(sk, x) = (z, c),

(11)y = F(sk, x) = H2(z⊕ x).

(12)
{

H1(h
zg−c, x) = c,

H2(z⊕ x) = y.

2  For example, Shanks algorithm, one of the famous sieve methods, 
can realize the computational complexity of O(

√
N) to find out r and 

r
′.
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We now prove that our VRF-DDH satisfies the required 
security properties, as follows: 

1.	 �����������. For all pairs of keys (pk = {g, p, q, h = g� ,

� = g�}, sk = {g, p, q, h = g� , �, �}) ∈ Setup(1�) and any 
integer x, from the definitions of F(sk, x) and G(sk, x), 
we can easily get 

 So it follows immediately that 

 and H2(z⊕ x) = y . That is, the value y enables to be 
deterministically obtained from the proof � = (z, c) , we 
have thus Verify(pk, x, y,�) = 1.

2.	 ����������. Assume that there exists the public key 
pk = {g, p, q, h = g� , � = g�} , an integer x, and pairs 
of values (y�,�� = (z�, c�)) ∈ (𝔾,ℤq) that satisfy 
Verify(pk, x, y�,��) = 1 , for � ∈ {1, 2} . It is obvious to 
see that y1 = y2 . Specifically, from the definition of the 
proof G(sk, x), we can get 

where � ∈ {1, 2} . Furthermore, the second verifica-
tion equation yields y𝜌 = H

2

(z𝜌 ⊕ x) = H
2

((𝛽 + H
1

(g𝛽 , x)∕𝛼)⊕ x) for both � ∈ {1, 2} , which implies 
y1 = H2((𝛽 + H1(g

𝛽 , x)∕𝛼)⊕ x) = y2 . Thus there is only 
one unique y on given x that can be proved to be valid 
with the proof �.

3.	 ����������������. We present the following Theo-
rem 2 with respect to the proof of pseudorandomness 
property.

Theorem 2  Suppose the ( t, �)-DDH assumption holds in 
a group � of prime order p. Our VRF scheme is a (t�, ��)
-secure VRF with n-bit input, where t� ≈ t and � ≥ 1

2n
�′.

Proof. For the sake of contradiction, suppose there exists 
an adversary A , running in time t′ , can distinguish the func-
tion F(sk, x) from a random element r in group � with non-
negligible advantage �′ , i.e., AdvDDH

g,�,�
(A) ≥ �� , then we will 

build an simulator B that uses the advantage of A to break 
the DDH assumption with non-negligible probability.

–	 Input to the reduction. The simulator B is given a 
tuple (g, g� , g� , T) ∈ � , where T is either g�� ∈ � or a 
random element r in � . Finally, B outputs 1 if T = g�� 
and 0 otherwise.

–	 Setup. We assume that A will issue a challenge query on 
x∗ to distinguish F(sk, x∗) from a random element r in � . 
B generates the public key pk = {g, p, q, h = g� , � = g�} 

(13)hzg−c = h�+c∕�g−c = h�(g�)c∕�g−c = h� .

(14)H1(h
zg−c, x) = H1(h

� , x) = c

(15)z� = � + c�∕� = � + H1(g
� , x)∕�,

and the secret key sk = {g, p, q, h = g� , �, �} , then sends 
the public key pk to A.

–	 Oracle Queries. Without loss of generality, we assume 
that A makes at most Q queries and never repeats que-
ries. Once A issues a query on xi (1 ≤ i < Q) to B , then 
B responses to the query xi as follows:

•	 If the query xi = x∗(x∗ is challenge query), then 
B aborts and outputs a uniformly random guess 
b� ∈ {0, 1};

•	 Otherwise, B processes as follows: 

1.	 choose a uniformly random value ci from ℤq , 
program ci = H1(h

� , xi) , then response with ci;
2.	 define zi ≡ � + ci∕� mod q , then response with 

zi;
3.	 draw a uniformly random value ui from ℤq , pro-

gram H2(zi ⊕ xi) = ui and define yi = ui , then 
response with ui.

	    Thus, B will send a tuple (zi, ci, ui) as response 
values of the query xi to A on this stage.

–	 Challenge Query. A issues a challenge query on x∗ . If 
the challenge query is different from x∗ , then B aborts 
and outputs a uniformly random guess b� ∈ {0, 1} . Oth-
erwise, B outputs a value T∗ which is either F(sk, x∗) or 
a random element r in � , then sends it to A.

–	 Guess. Finally, A outputs a guess b′ according to 

 and then B outputs the same b′ as its guess.
–	 Success probability. We now analyze the probability that B 

wins the game. Let Bwin denote the event that B wins the 
game. Similarly, Babort and Babort are denoted as the events 
that B aborts and performs the simulation, respectively. On 
stage of challenge query, considering that B aborts only when 
the challenge query is different from x∗ , we have thus 
Pr[Babort] = 1 − 1∕2n . Moreover, if B aborts, then it outputs 
a uniformly random bit b� ∈ {0, 1} . It means that the success 
probability of B in this case relies on a flip of a coin 
b� ∈ {0, 1} , so we have Pr[Bwin|Babort] = 1∕2 . On the other 
hand, if B does not abort, then B can calculate c∗ = H1(T , x

∗) , 
z∗ ≡ � + c∗∕� mod q and F(sk, x∗) = H2(z

∗ ⊕ x∗) in 
sequence since T = g�� . It is obvious that F(sk, x∗) can be 
obtained from T. So, B wins the game in this case with the 
same advantage as A , whose non-negligible advantage is �′ . 
Thus we have Pr[Bwin|Babort] = 1∕2 + AdvDDH

g,�,�
(A) ≥ 1∕2 + �� . 

Thus, the probability that B wins the game is 

(16)b
�

=

{
0, T∗ = r

1, T∗ = F(sk, x∗)
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 It means that B wins the game with non-negligible 
advantage � ≥ 1

2n
�′ . However, since the ( t, �)-DDH 

assumption holds in group � , there not exists such a sim-
ulator B that wins the game with non-negligible advan-
tage � . In other words, there not exists an adversary A , 
running in time t′ , can distinguish the function F(sk, x) 
from a random element r in group � with non-negligible 
advantage �′ , so the theorem holds. We complete the 
proof of Theorem 2.

3.3 � VRF construction over LHL

We now present the VRF construction over LHL (VRF-
LHL) in order to further reduce the storage overhead of VRF. 
Let H3 be a universal hash function that maps an element in 
ℤq to an v-bit bitstring. Our VRF-LHL that contains three 
polynomial-time algorithms is as follows: 

1.	 �����(1�). It takes the security parameter � as input, 
and outputs the secret key sk = {g, p, q, �, �} and pub-
lic key pk = {g, p, q, h = g� , � = g�},where � and � are 
randomly chosen in ℤq.

2.	 �����(sk, x). It takes an integer x and the secret key sk as 
inputs, and then generates a value y with a correspond-
ing proof � , which are defined as 

 where the size of � is log(q) bits.
3.	 ������(pk, x, y,�). It verifies whether the value y is cor-

rectly computed on given x by using the proof � along 
with the public key pk. Specifically, this algorithm will 
check 

 If two above equations holds, this algorithm outputs 1, 
and 0 otherwise.

We also provide the Algorithms 4 and 5 to illustrate 
the processing of the Prove and Verify modules, respec-
tively. Obviously, the two algorithms are rather simple in 
structure and easy to be implemented in practice. So, our 
VRF-LHL have high computational efficiency.

(17)

Pr[Bwin] =Pr[Bwin|Babort] ⋅ Pr[Babort]+

Pr[Bwin|Babort] ⋅ Pr[Babort]

≥
1

2
⋅ (1 −

1

2n
) + (

1

2
+ ��) ⋅

1

2n

=
1

2
+

1

2n
��.

(18)
{

y = F(sk, x) = H3(𝜋 ⊕ x),

𝜋 = G(sk, x) ≡ (x − 𝛼𝛾)∕𝛽 mod q,

(19)
{

𝛾𝜋h𝛾 ≡ gx mod p,

H3(𝜋 ⊕ x) = y.

We now prove that our VRF-LHL satisfies the required 
security properties, as follows: 

1.	 �����������. For all pairs of keys (pk = {g, p, q, h = g� ,

� = g�}, sk = {g, p, q, �, �}) ∈ Setup(1�) , and any inte-
ger x, from the definitions of F(sk, x) and G(sk, x), it 
follows immediately that 

and H3(𝜋 ⊕ x) = y . That is, the value y can be deter-
ministically obtained from the proof � , we have thus 
Verify(pk, x, y,�) = 1.

2.	 ����������. Assume that there exists the pub-
lic key pk = {g, p, q, h = g� , � = g�} , an integer x, 
and pairs of values (y�,��) ∈ (𝔾,ℤq) that satisfy 
Verify(pk, x, y�,��) = 1 , for both � ∈ {1, 2} . It is obvious 
to see that y1 = y2 . Specifically, from the first verifica-
tion equation, we enable to yield 

and further get �� ≡ (x − ��)∕� mod q for both 
� ∈ {1, 2} according to the multiplication oper-
ation rules of the same base power. Mean-
while, the second verification equation yields 
y𝜌 = H3(𝜋𝜌 ⊕ x) = H3((x − 𝛼𝛾)∕𝛽 mod q⊕ x)  f o r 

(20)��h� = (g�)(x−��)∕�(g�)� ≡ gx mod p,

(21)���h� = g���g�� = g���+�� ≡ gx mod p,
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both � ∈ {1, 2} , which implies y
1

= H
3

((x − ��)∕�

modq⊕ x) = y
2

 . So, there is only one unique y on given 
x that can be proved to be valid with the proof �.

3.	 ����������. The famous LHL lemma simply states that 
a randomness extractor can be constructed from an uni-
versal hash family, which provides an appropriate method 
to prove the randomness property. Specifically, we pro-
pose Theorem 3 with respect to the randomness proof.

Theorem 3  Suppose the H3 is a 1∕2v-universal hash function, 
then our VRF scheme is a (m, �)-secure VRF with n-bit input 
under LHL, where � ≥ 1

2

√
2v−m.

Proof. According to LHL, one universal hash function 
leads to an efficient randomness extractor. Specifically, if 
X is a distribution of min-entropy m over space X  , H is 
a family of functions from X  to {0, 1}v , and H is a 1∕2v
-universal hash function randomly chosen from H , then we 
will construct an (m, �)-extractor that satisfies the statistical 
distance between H(X) and the uniform distribution Uv on 
{0, 1}v is bounded by 1

2

√
2v−m . That is, there not exists an 

algorithm can distinguish the extracted randomness H(X) 
from uniform distribution Uv with advantage greater than 
� =

1

2

√
2v−m . Therefore, according to LHL, if the H3 in our 

VRF scheme is a 1∕2v-universal hash function, then we will 
achieve a (m, �)-secure VRF with n-bit input. That is, there 
not exists an adversary can distinguish the function F(sk, x) 
from a random value with advantage greater than � . We com-
plete the proof of Theorem 3.

4 � Comparisons

In this section, we compare our three VRF schemes, VRF-
RSA, VRF-DDH and VRF-LHL, with two representative 
schemes proposed in the literature [14, 26] in terms of space 

and computation complexity. The comparison results are 
summarized in Table 1.

Now, let us explain some notations used in Table 1. For 
analysis of storage overheads, |ℤN| , |ℤq| , |�| and |�T | rep-
resent the size of elements in groups ℤN , ℤq , � and �T , 
respectively. To measure the computational cost, we denote 
by [H] the cost of a hash operation. Similarly, the cost of an 
exponential operation in ℤN and � are denoted as [EN] and 
[Ep] , respectively. Besides, the cost of calculating bilinear 
map on elliptic curve is denoted as [B] in the schemes [14, 
26]. We omit the algebraic calculation in ℤq since it is very 
efficient.

In the schemes [14, 26], assuming that the bilin-
ear map e ∶ � × � → �T  is constructed on the curve 
y2 ≡ x3 + x mod p over the field �p for some prime 
p ≡ 3 mod 4 , where � and �T are two multiplicative groups 
of order q and the integer q is a prime factor of p + 1 . Under 
128-bit security strength, it is required that the RSA modulus 
N is 3072 bits, i.e., |ℤN|=3072 bits. Correspondingly, the 
size of elements in � is also 3072 bits, i.e., |�| = 3072 bits. 
When the embedding degree of the curve is 2, the size of 
elements in �T should be 6144 bits, i.e., |�T | = 6144 bits. 
The prime q of the cyclic subgroup ℤq needs only to be 256-
bit integer, i.e., |ℤq| = 256 bits.

From Table 1, it can be seen that the schemes [14, 26] 
construct their VRFs from bilinear map primitives, while 
our three schemes are directly based on RSA, Schnorr and 
ELGamal signatures, respectively. The storage overheads of 
four major entities, the secret key sk, the public key pk, the 
proof � and the VRF’s output y, are also listed in Table 1. In 
the scheme [26], it is easy to see that the sizes of three enti-
ties, sk, pk and � , are linear correlation with security strength 
n, but y is of a fixed size. In addition, all of the four entities 
are still fixed size in the scheme [14] and our schemes. As 
shown in Table 1, the storage overheads of sk and pk in our 
schemes are slightly larger than these of [14] but smaller 

Table 1   Performance comparisons of our three VRF schemes with previous schemes

Item [26] [14] VRF-RSA VRF-DDH VRF-LHL

Size sk (2n + 5)|ℤq| |ℤq| 2|ℤN | 2|ℤq| 2|ℤq|
pk (2n + 7)|�| |�| 2|ℤN | 2|�| 2|�|
� (2n + 4)|�| |�| |ℤN | 2|ℤq| |ℤq|
y |�T | |�T | |ℤN | |�| |�|

Overhead sk 8352B 32B 768B 64B 64B
pk 100992B 384B 768B 768B 768B
� 99840B 384B 384B 64B 32B
y 768B 768B 384B 384B 384B

Computing time Prove [H] + (2n + 5)[Ep] + [B] [Ep] + [B] [H] + [EN ] 2[H] + [Ep] [H]
Verify [H] + (4n + 6)[Ep] + 3[B] [Ep] + 3[B] [H] + [EN ] 2[H] + 2[Ep] [H] + 3[Ep]

Cryptography primitive Bilinear map on elliptic 
curve

Bilinear map on elliptic 
curve

RSA signature Schnorr signature ELGamal signature
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than [26] when n is 128 bits. However, the storage overheads 
of � and y in our schemes are much smaller than these of the 
schemes [14, 26]. For example, the storage overheads of � 
and y in VRF-LHL are only 32 and 384 bytes, respectively. 
Our VRF-LHL significantly improves both of the sizes of � 
and y. Therefore, the comparison results indicates that our 
schemes have lower storage overheads in practice.

Next, we compare the computation complexity of Prove 
and Verify algorithms. Obviously, the computing time of 
Prove and Verify in [14] are significantly smaller than these 
of [26], which are linear correlation with n. Moreover, both 
Prove and Verify of their schemes require high computa-
tional cost since they all use bilinear map on elliptic curve. 
However, our VRF schemes only involve exponential and 
hash operations in single group without bilinear map. For 
example, the Prove in VRF-DDH only needs to perform one 
exponential operation in � and two hash operations, so that 
its computational overhead is [Ep] + 2[H] . So, our schemes 
should have lower computational overheads.

5 � Application of VRFs in blockchain

In this section, we show a specific application of our VRF 
constructions in efficient consensus protocol of block-
chain. Specifically, we demonstrate the detailed process of 
our VRF-based consensus protocol design and its applica-
tion in Algorand [9]. A general approach is also illustrated 
to integrate our VRF constructions with block structure in 
blockchain. Besides, we show a script implementation of 
our VRF constructions in blockchain. Further, the experi-
mental evaluation of our VRF constructions is conducted 
in terms of storage and computational overheads. Finally, 
we compare the VRF scheme used in Algorand with our 
VRF-LHL scheme from the aspects of performance and 
security.

5.1 �  VRF‑based consensus protocols

In order to address the problem of low efficiency and high 
energy consumption in the PoW-based protocol of Bitcoin, 
Turing Award winner Gilad et al. [9] proposed a new VRF-
based consensus protocol called Algorand in 2016. Roughly 
speaking, Algorand uses a cryptographic sortation algo-
rithm to select committee members, which are responsible 
for completing consensus process on some candidate block. 
Figure 3 illustrates the consensus process based on the cryp-
tographic sortation algorithm in Algorand.

Algorand consensus [9] is mainly divided into two stages, 
as shown in Fig. 3. In the first stage, the cryptographic sorta-
tion algorithm will be executed to randomly choose a small 
fraction of users from the entire network in a private and 

non-interactive manner, thereby forming a proposer com-
mittee whose members are in charge of proposing new can-
didate blocks. In the second stage, another subset of users 
will be randomly selected to form a verifier committee based 
on the algorithm, then the members reach BA* consensus on 
one of the proposed candidate blocks.

Obviously, the cryptographic sortation algorithm, that 
can ensure the randomness of the selected committee 
members, is required to be executed at the beginning of 
each stage in Algorand [9]. The algorithm implementa-
tion mainly relies on VRF, which is essentially an efficient 
RF with a non-interactive verifiable mechanism. Instead 
of PoW-based mining, using VRF can efficiently avoid 
the repeated calculations of nodes, randomly select block 
proposers, and easily verify the proposed block. Therefore, 
VRF is very suitable for designing efficient consensus pro-
tocols in blockchain.

We now give a general approach to integrate our VRF 
constructions with block structure in blockchain. Generally 
speaking, in the design of VRF-based protocols, nodes are 
required to implement VRF which takes a secret key sk and 
data x as inputs and generates a unique y and a proof � . 
Figure 4 illustrates the integration of our VRF constructions 
with the block header in the blockchain.

Specifically, as shown in Fig. 4, the nNonce field is used to 
store � , which acts as the proof of the block. The fields except the 
nNonce in the block header is used to generate x together, i.e.,  
x=nVersion||hashPrevBlock||hashMerkleRoot||nTime||nBits, 
where || denotes the concatenation operator. The VRF’s output  
y is stored in the hashPrevBlock field. In addition, sk and pk are 
stored in the wallet of the node and the scriptPubkey field (see 
Fig. 5) of the coinbase transaction in the block, respectively.

Next, taking VRF-RSA as an example, we demonstrate 
the detailed process of the VRF-based consensus protocol 
design as follows:

Step 1. The node collects pending transactions of the 
whole network within a period of time, and then adds 
a coinbase transaction which is used for issuing new 
rewards. The secret key sk = {d,N} is stored in its wallet, 
and the corresponding pk = {e,N} is filled in the script-
Pubkey field. Next, the node verifies and packages these 
transactions.

Step 2. The node calculates the hashMerkleRoot of 
these transactions, and then it fills the informations of the 
nVersion, hashPrevBlock, nTime and nBits fields. Next, 
the node calculates the concatenation of these fields to 
obtain x.

Step 3. The node calculates � ≡ xd mod N  by using 
sk = {d,N} , then writes � into the nNonce field.

Step 4. The node uses the double SHA-256 to calculate 
the output of the block header, i.e., y = Hash(𝜋 ⊕ x) . Even-
tually, the node forms a candidate block.
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Subsequently, our VRF construction can be applied 
into the cryptographic sortation algorithm, which helps to 
randomly select the proposer and verifier committees in 
Algorand. Once a candidate block is proposed by the pro-
poser committee and is broadcast on the entire network, the 
verifier committee can verify the validity of this block based 
on the verifiable mechanism in VRF. In other words, the 
verifiers who hold � and pk can confirm that the proposer 
indeed has the privilege to propose the block.

More specifically, the workflow of the block verification 
is described as follows: Firstly, the verifier calculates x based 
on the block header, and then obtains � and y that are stored 
in the nNonce and hashPreBlock fileds, respectively. Sec-
ondly, the verifier gets the pk = {e,N} of the proposer from 
the scriptPubkey field in the coinbase transaction. Finally, 
the verifier will check whether the equations �e mod N ≡ x 
and y = Hash(𝜋 ⊕ x) holds. If these two equations holds, 
then the verifier confirms that the block proposer has the 
privilege and the block is valid.

5.2 � Improvement of scripting system

Blockchain script is a simple, Forth-like, stack-based pro-
gram, which is specifically designed for transaction verifi-
cation. The scripting language is intentionally not Turing 
Complete, i.e., it has no loops or complex flow control capa-
bilities. Such a restricted script can easily resist attacks with 
malicious code so as to ensure the security and efficiency 
of blockchain transactions. Besides, the script is automati-
cally executed by the interpreter in blockchain node, which 
significantly reduces user-side computational overheads. For 

Fig. 3   The consensus process 
based on the cryptographic sor-
tation algorithm in Algorand

Fig. 4   The integration of our VRF constructions with the block 
header in blockchain Fig. 5   Storage location of pk in coinbase transaction
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example, Bitcoin uses such a scripting system to realize the 
cryptographic process of transactions. Meanwhile, five dif-
ferent types of signature scripts are designed to increase the 
flexibility of cryptographic constructions. In view of this, we 
can complete the execution of VRF algorithm based on the 
scripting system so as to provide secure and efficient block 
verification in the consensus process.

The structure of blockchain script is relatively simple and 
flexible. Generally, a script consists of multiple data values 
and operators, where the data values are enclosed in angle 
brackets and the operator names start with the string “OP_”. 
The operator is encoded in a single byte, and the byte value 
is called the opcode of the operator. For example, the most 
common signature script, Pay to Public Key Hash (P2PKH), 
is defined in Bitcoin transaction as

The P2PKH script includes two parts, scriptSig and script-
Pubkey, which are used to verify the validity of a transaction. 
The values, corresponding to ⟨sig⟩ , ⟨PubK⟩ and ⟨PubKHash⟩ , 
will be pushed onto the stack, and the opcodes, OP_DUP, 
OP_HASH160, OP_EQUALVERIFY and OP_CHECK-
SIG, are used to invoke specific functions. For example, the 
OP_DUP is a duplication operator that duplicates the top 
stack item.

In order to automatically implement block verification 
based on VRF-RSA, three new opcodes are required to be 
defined and some existing opcodes are utilized, as shown in 
Table 2. The new opcode, OP_EXP _MOD, is a modular 
exponential operator. In addition, another two new opcodes, 
OP_RSA_PK and OP_VRF _INPUT, are used to obtain 
RSA’s public key pk = (e,N) from the scriptPubkey field in 
coinbase transaction (see Fig. 5) and the VRF’s input x from 

⟨sig⟩⟨PubK⟩
⏟⏞⏞⏟⏞⏞⏟

scriptSig

OP_DUP OP_HASH160 ⟨PubKHash⟩
OP_EQUALVERIFY OP_CHECHSIG

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
scriptPubKey

.

the block header (see Fig. 4), respectively. Then, the block 
verification script based on VRF-RSA is defined as follows:

Obviously, the script consists of two parts, scriptProof 
and scriptHash. Specifically, the validity of the VRF’s input 
x can be automatically checked by executing scriptProof, 
which is stored in the nNonce field of the block header. 
Combined with scriptProof, scriptHash can be used to verify 
the correctness of the VRF’s output y and stored in the hash-
PreBlock field of the block header. Obviously, the script is 
responsible for automatic execution of Verify algorithm in 
VRF, which helps to realize more secure and efficient block 
verification.

Next, we illustrate the execution process of the block veri-
fication script. The stack state during the script execution is 
shown in Table 3. The script is processed from left to right 
and its execution proceeds as follows:

Step 1-5. The stack is initialized and emptied, then the 
proof ⟨�⟩ is pushed onto the stack and duplicated by the 
OP_DUP operator. Next, the OP_RSA_PK operator obtains 
RSA’s public key ⟨e⟩ and ⟨N⟩ from the scriptPubkey field 
in coinbase transaction (see Fig. 5) and pushes them onto 
the stack. Then, the OP_EXP_MOD operator calculates 
⟨�e mod N⟩ and then pushes it onto the stack.

Step 6-8. ⟨�e mod N⟩ is duplicated by the OP_DUP 
operator, then the OP_VRF_INPUT operator calculates the 
VRF’s input x from the block header (see Fig.4) and pushes 
it onto the stack. Next, the OP_EQUALVERIFY operator 
compares ⟨�e mod N⟩ with ⟨x⟩ . If they are equal, the script 
execution proceeds. Otherwise, it terminates with an error.

Step 9-10. The OP_XOR operator performs a XOR 
operation on ⟨�⟩ and ⟨�e mod N⟩ . Next, the output of the 

⟨�⟩ OP_DUP OP_RSA_PK OP_EXP_MOD

OP_DUP OP_VRF_INPUT OP_EQUALVERIFY

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
scriptProof

OP_XOR OP_HASH256

⟨y⟩ OP_EQUALVERIFY

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
scriptHash

.

Table 2   The definitions of existing and new added opcodes in the block verification script

Type Word Opcode Input Output Description

Existing opcode OP_DUP 0x76 a a, a Duplicates the top stack item a.
OP_XOR 0x86 a, b out Calculates Boolean XOR of a and b.
OP_EQUAL 0x87 a, b True/false Returns 1 if a and b are equal, 0 otherwise.
OP_EQUALVERIFY 0x88 a, b None/fail The script execution proceeds if a and b are equal, it terminates with 

an error otherwise. Note that a and b are finally removed from the 
stack.

OP_HASH256 0xaa in hash The input is hashed two times with SHA-256.
New opcodes OP_RSA_PK 0xb1 None e, N Gets RSA’s public key {e,N} from the scriptPubkey field in coinbase 

transaction, then e and N are pushed onto the stack.
OP_VRF_INPUT 0xb2 None VRF’s input x Calculates VRF’s input x from the block header, then x is pushed 

onto the stack.
OP_EXP_MOD 0xb3 a, b, c out Pops the top three items a, b and c, then b to the power of a under 

modulus c is pushed onto the stack.
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SHA-256 of ⟨𝜋 ⊕ 𝜋e mod N⟩ is generated and pushed onto 
the stack by the OP_HASH256 operator.

Step 11-12. The VRF’s output y is pushed onto the stack. 
Next, the OP_EQUAL operator pops up and compares 
⟨Hash(𝜋 ⊕ 𝜋e mod N)⟩ with ⟨y⟩ . If they are equal, a value 
True is pushed onto the stack. It means that the block veri-
fication is successful. Otherwise, False is pushed onto the 
stack, the verification fails.

5.3 � Performance analysis

We now analyze the performance of our VRF constructions in 
the design of blockchain consensus protocols in terms of stor-
age and computational overheads. In VRF-RSA, let the size of 
the modulus N be 1024 bits (Considering that the current con-
sensus time of Bitcoin is about 10 minutes, such a short period 
of time is sufficient for VRF to resist adversarial attacks). Cor-
respondingly, the proof � needs to be 128-byte integer. Fig-
ure 6 illustrates the block header fields and their sizes in the 
PoW-based and VRF-based protocols, respectively.

Specifically, as shown in Fig. 6, the nNonce field is used 
to store the scriptProof that contains 128-byte � and 6-byte 
opcodes in the VRF-based protocol. The scriptHash con-
sists of 32-byte y and 3-byte opcodes, which is stored in the 
hashPreBlock filed. In addition, the other fields in the block 
header remain unchanged. So, the block header size in the 
VRF-based protocol is larger than that in the PoW. However, 

comparing with the block size (870K bytes), the 133-byte 
increase of the block header is very small, which will lightly 
affect the number of transactions in the block.

Another two VRF constructions, VRF-DDH and VRF-
LHL, will bring more efficient storage overheads. For exam-
ple, under 128-bit security strength, the proof � in ℤq only 
needs to be 32-byte integer. So, the scriptProof in VRF-
DDH contains 64-byte � and 6-byte opcodes, i.e., it requires 
70-byte storage overhead. Moreover, the scriptProof in VRF-
LHL contains 32-byte � and 6-byte opcodes, so, its storage 
overhead can be further reduced to 38 bytes.

The PoW-based protocol requires high computing power 
and energy consumption. Taking Bitcoin as an example, 
the Bitcoin’s computing power has touched a new high of 
around 140 exahashes3 per second (EH/s). Meanwhile, the 
Cambridge Bitcoin Electricity Consumption Index (CBECI) 
shows that the estimated power to run Bitcoin has reached 
10.97 gigawatts (GW) a day. However, the VRF-based pro-
tocol only needs to perform VRF operation once, which 
avoids the repeated calculations of the double SHA-256 for 
the block header in the PoW. Therefore, the VRF-based pro-
tocol can greatly reduce the computational overheads and 
save the energy consumption.

Table 3   The stack state during the execution of the block verification script

Step Stack Script Description

1 Empty ⟨�⟩ OP_DUP OP_RSA_PK OP_EXP_MOD OP_
DUP OP_VRF_INPUT OP_EQUALVERIFY 
OP_XOR OP_HASH256 ⟨y⟩ OP_EQUAL

scriptProof and scriptHash are combined.

2 ⟨�⟩ OP_DUP OP_RSA_PK OP_EXP_MOD OP_DUP 
OP_VRF_INPUT OP_EQUALVERIFY OP_
XOR OP_HASH256 ⟨y⟩ OP_EQUAL

⟨�⟩ is added to the stack.

3 ⟨�⟩ ⟨�⟩ OP_RSA_PK OP_EXP_MOD OP_DUP OP_
VRF_INPUT OP_EQUALVERIFY OP_XOR 
OP_HASH256 ⟨y⟩ OP_EQUAL

Top stack item is duplicated.

4 ⟨�⟩ ⟨�⟩ ⟨e⟩ ⟨N⟩ OP_EXP_MOD OP_DUP OP_VRF_INPUT 
OP_EQUALVERIFY OP_XOR OP_HASH256 
⟨y⟩ OP_EQUAL

⟨e⟩ and ⟨N⟩ are added to the stack.

5 ⟨�⟩ ⟨�e mod N⟩ OP_DUP OP_VRF_INPUT OP_EQUALVERIFY 
OP_XOR OP_HASH256 ⟨y⟩ OP_EQUAL

⟨�e mod N⟩ is added to the stack.

6 ⟨�⟩ ⟨�e mod N⟩ ⟨�e mod N⟩ OP_VRF_INPUT OP_EQUALVERIFY OP_XOR 
OP_HASH256 ⟨y⟩ OP_EQUAL

Top stack item is duplicated.

7 ⟨�⟩ ⟨�e mod N⟩ ⟨�e mod N⟩ ⟨x⟩ OP_EQUALVERIFY OP_XOR OP_HASH256 ⟨y⟩ 
OP_EQUAL

The VRF’s input ⟨x⟩ is added to the stack.

8 ⟨�⟩ ⟨�e mod N⟩ OP_XOR OP_HASH256 ⟨y⟩ OP_EQUAL The script execution proceeds if the top two stack 
items are equal.

9 ⟨𝜋 ⊕ 𝜋e mod N⟩ OP_HASH256 ⟨y⟩ OP_EQUAL Boolean XOR of the top two items is calculated.
10 ⟨Hash(𝜋 ⊕ 𝜋e mod N)⟩ ⟨y⟩ OP_EQUAL Top stack item is hashed.
11 ⟨Hash(𝜋 ⊕ 𝜋e mod N)⟩ ⟨y⟩ OP_EQUAL ⟨y⟩ is added to the stack.
12 True/false Empty Equality is checked between the top two stack items.

3  one exahash is one quintillion hashes, i.e., 1 EH = 1018 hashes.
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In addition, the VRF’s output y that is stored in the hash-
PreBlock field can maintain the chain structure of block-
chain. Considering the sk = {d,N} of each node is unique, 
� that is obtained from � ≡ xd mod N  should also be dif-
ferent. So, the probability that the outputs y of two distinct 

blocks will be same is extremely negligible since the col-
lision resistance property of cryptographic hash function. 
In other words, y can be securely considered as a unique 
identifier of the block.

The unchanged hashMerkleRoot field stores the root hash 
of Merkle tree that is formed by transactions in blockchain. 
Once a transaction in the block is maliciously forged or 
tampered with, the root hash will be changed dramatically. 
Therefore, the hashMerkleRoot field is associated with trans-
actions in the block to ensure their integrity.

5.4 � Experimental evaluation

We conduct experiments to evaluate the efficiency of the 
proposed VRF schemes by using Wolfram Mathematica 
9.0.1.0 software. All the programs are executed on a Win-
dows 10 (64-bit) PC with Intel(R) Core(TM) i5-4590S CPU 

(a) (b)

Fig. 6   The block header fields and their sizes in the PoW-based and 
VRF-based protocols, respectively

Fig. 7   Computing time of Prove and Verify, and the size of modulus N under different security strengths
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@ 3.00GHz processor and 4G DDR3-RAM. Let hash func-
tion be SHA-256 cryptographic algorithm and the value of 
public exponent e be 65537. Firstly, we test the computa-
tional overhead of VRF-RSA under the different security 
strengths n, which is from 80 to 260. Figure 7 shows com-
puting time of Prove and Verify algorithms in VRF, and the 
size of modulus N under five common security strengths n 
in logarithmic coordinates. Obviously, the larger the size of 
N, the higher the computational overheads of the two algo-
rithms. In addition, the computing time of Verify is much 
shorter than that of Prove, which can greatly reduce the 
block verification cost of the verifiers.

In order to show the uptrend of curves more clearly, 
the general numerical ordinate is used to represent the 
computing time. As shown in Fig. 8, we demonstrate the 
relationship between the computing time of Prove / Verify 
and the security strength n. Obviously, the computing time 

of the two algorithms is an approximate quadratic func-
tion of n. When the security strength reaches 256 bits, 
the computing time of Prove and Verify is less than 1 
second and 0.0035 seconds, respectively. Therefore, the 
computational overheads of VRF-RSA can be reduced to 
the millisecond level.

Next, we compare the computational overheads of our 
three VRF schemes under 128-bit security strength. The 
experimental computation overheads of Prove and Verify 
in our schemes are listed in Table 4. Obviously, Prove and 
Verify need only to perform a few exponential and hash 
operations, and their computational overheads can reach the 
millisecond level. For example, the Prove in VRF-DDH only 
needs to perform one 256-bit exponential operation in � and 
two SHA-256 operations, its time complexity and compu-
tational overhead are [Ep] + 2[H] and 0.00230161 seconds, 
respectively.

Fig. 8   The relationship between the computing time of Prove / Verify and the security strength n 
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In VRF-RSA, it is easy to see that Prove and Verify have 
the same time complexity. However, the computational over-
head of Verify is much smaller than that of Prove since the 
bit length of the selected e (17 bits) is far less than that of the 
private exponent d. Moreover, considering that only one SHA-
256 operation needs to be performed in VRF-LHL, the time 
complexity of Prove is [H] and the computational overhead 
can be reduced to the microsecond level. However, Verify 
needs to perform one 3072-bit exponential operation in � , 
so its computational overhead reaches 0.02947671 seconds. 
Therefore, three proposed VRF schemes have low computa-
tional overheads in practical applications and can meet the 
efficiency requirements of consensus protocols in blockchain.

5.5 � Performance comparisons

Since Algorand was proposed in [9], VRF attracts wide 
attention in bockchain. Actually, Algorand did not give a 
specific VRF scheme, but used the existing scheme (called 
GNPR-VRF) proposed by Goldberg et al. [35]. We also 
compare their scheme with our VRF-LHL sche-me from 
two aspects of performance and security. Firstly, GNPR-
VRF is implemented over Curve25519 [36] and the curve 
equation can be expressed as y2 = x3 + 486662x2 + x . In 
this setting, GNPR-VRF was proven to reach approxi-
mately 128-bit security on random oracle model under 
the DDH assumption. Referring to Sect. 4, VRF-LHL also 
achieves 128-bit or higher security based on LHL lemma.

We firstly compare the storage overheads of these two 
schemes. GNPR-VRF uses the above elliptic curve over �q , 
where q is a 256-bit prime. Any point (x, y) on the curve is 
represented by 512 bits, where x, y ∈ �q . However, VRF-LHL 
operates in finite field �p of prime order p, which is required 
to be a 3072-bit integer. Thus, the size of the GNPR-VRF’s 
output y is 32 bytes, which is lower than that of VRF-LHL 
(384 bytes). However, the proof � in VRF-LHL needs only 
32-byte storage overhead, which is lower than that in GNPR-
VRF (80 bytes). Therefore, our VRF-LHL scheme has lower 
storage overhead for �.

We next evaluate the computation time of Prove and Ver-
ify algorithms. Firstly, compared with VRF-LHL, the Verify 
in GNPR-VRF needs more (three hash and four exponent) 
operations. On the other hand, the Verify in GNPR-VRF is 
more efficient than that of VRF-LHL as a result that GNPR-
VRF operates in �q of 256-bit q. Moreover, the Prove in 
GNPR-VRF involves three hash operations and three expo-
nential operations in �q , but VRF-LHL only requires one 
hash operation. So the Prove in VRF-LHL has lower com-
putational overheads than that in GNPR-VRF.

Finally, GNPR-VRF used in Algorand is based on elliptic-
curve cryptography (ECC). It employs so special curve that 
is completely different from the curves used in cryptography 
textbooks. Although the advantage of the scheme on ECC is 
small storage space, developers need to have a good math-
ematical background on elliptic curve and abstract algebra. 
In contrast to it, our VRF-LHL scheme is entirely based on 
finite-field cryptography, which has relatively low develop-
ment difficulty in practical applications.

6 � Conclusion

In this paper, we propose three simple and efficient VRF 
constructions which are practically applicable to the consen-
sus protocol design of blockchain. We also provide full secu-
rity analysis of our constructions. Furthermore, we show 
a specific application of our constructions in the famous 
Algorand consensus protocol, and analyze the performance 
of our constructions in VRF-based consensus protocol 
design in terms of storage and computation overheads. The 
performance analysis and experimental evaluation illustrate 
that the designed protocol based on our VRF constructions 
can effectively reduce the computational resources of PoW-
based protocols and improve consensus efficiency.
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