
Vol.:(0123456789)1 3

Peer-to-Peer Networking and Applications
https://doi.org/10.1007/s12083-021-01243-x

Continuous improvement of script‑driven verifiable random functions
for reducing computing power in blockchain consensus protocols

Guanglai Guo1 · Yan Zhu1 · E Chen1 · Guizhen Zhu2 · Di Ma3 · William ChengChung Chu4

Received: 2 May 2021 / Accepted: 1 September 2021
© The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2021

Abstract
In order to solve the problem of low efficiency and high energy consumption of the Proof-of-Work (PoW) consensus pro-
tocol in blockchain within a peer-to-peer network, some new protocols based on Verifiable Random Function (VRF) have
emerged recently. However, these VRF-based consensus protocols do not actually give a concrete and efficient VRF con-
struction. In view of this, we present three simple and practical VRF constructions from the RSA hardness assumption, the
Decisional Diffie-Hellman (DDH) assumption and the Leftover Hash Lemma (LHL) respectively, the output size of which is
continuously reduced for the design of efficient consensus protocol in blockchain. We also give a complete security analysis
of our VRF constructions. Furthermore, we show a specific application of our VRF constructions in the famous Algorand
consensus protocol. We illustrate a general approach to integrate our VRF constructions with block structure in blockchain.
Comparing with PoW-based mining, we demonstrate the detailed process of VRF-based consensus protocol. Meanwhile,
three new opcodes are designed for the scripting system in blockchain to develop a script pair, scriptProof and scriptHash,
which provides secure and efficient block verification. Finally, we evaluate the performance of our VRF constructions in
terms of storage and computational overheads, and the experimental evaluation results show our VRF constructions can
significantly reduce the computing power of consensus protocol in blockchain.

Keywords Verifiable random function · Script instruction · Consensus protocol · Blockchain · Leftover hash lemma ·
Performance

1 Introduction

With the rapid development of e-commerce and digital
finance, blockchain technology has been widely concerned
in recent years [1]. Exactly, blockchain is a new applica-
tion mode of computer technology such as distributed data
storage, peer-to-peer transmission, consensus mechanism
and signature algorithm. As the underlying technology
of Bitcoin, blockchain can be regarded as a decentralized
public ledger. All committed transactions are recorded in

this ledger and jointly maintained by all nodes without the
control of any third-party organization. Meanwhile, once
a transaction in blockchain is agreed by all nodes and is
packaged in blockchain, it is recorded by all nodes together
and cannot be tampered with. In addition, as a decentral-
ized ledger, blockchain records the input and output of each
transaction, and can easily trace each transaction record
through its chain structure. Therefore, blockchain has unique
advantages of decentralization, tamper proof, traceability,
etc, which is commonly considered as the cornerstone of
building the trusted large-scale applications such as financial
services [2], digital copyright [3], healthcare [4] and Internet
of Things [5].

Consensus mechanism, that can make all nodes work
together, is generally regarded as the core technology of
blockchain. More precisely, nodes participate collabora-
tively in maintaining a trusted public ledger in chronologi-
cal order and most of them keep a complete ledger backup
that must be exactly consistent with each other. Therefore,
consensus mechanism enables to solve the problem of data

 * Yan Zhu
 zhuyan@ustb.edu.cn

1 School of Computer and Communication Engineering,
University of Science and Technology, Beijing 10083, China

2 Data Communication Science and Technology Research
Institute, Beijing 100191, China

3 University of Michigan-Dearborn, Michigan 48128, USA
4 Tunghai University, Taichung 40704, Taiwan

http://orcid.org/0000-0002-9159-745X
http://crossmark.crossref.org/dialog/?doi=10.1007/s12083-021-01243-x&domain=pdf

 Peer-to-Peer Networking and Applications

1 3

consistency between untrusted nodes in blockchain. Our
work is of great significance for improving the security
and efficiency of peer-to-peer networks.

1.1 Motivation

Bitcoin, as the origin of blockchain, is the earliest and
most famous platform of blockchain. Satoshi Nakamoto
first introduced a Proof-of-Work (PoW) consensus proto-
col in Bitcoin [6], and it has been extensively employed
in most applications of blockchain. Generally speaking,
the PoW-based protocol should participate in solving a
complex computational puzzle together, in which all nodes
are required to compete for the privileges to propose new
blocks by their computing power [7]. Any node with
higher computing power might have greater chance to be
a block proposer.

The SHA-256 function y = Hash(x) serves as the compu-
tational puzzle in the PoW-based protocol, and it is essen-
tially a Random Function (RF) with collision resistance. RF
enables to generate a random output y on given input x. In
the PoW, a target threshold T should be set to the binary
form, i.e., T = 0n||R , where 0n denotes that the first n bits
of T are all 0, and R indicates that the remaining bits are
random values. On this basis, nodes should try different x
repeatedly and then calculate the RF’s output y until y ≤ T
holds. The first node to reach the target threshold T has a
greater advantage to obtain the privilege to propose a new
block. So, the cost of malicious proposers destroying the
system will be greatly increased since they must do a large
number of computations (or control more than 51% of net-
work’s total computing power), so as to guarantee the secu-
rity of the consensus process.

However, the PoW-based protocol has some limitations
[8] in practical application. Taking Bitcoin as an example,
we demonstrate main limitations as follows:

• High energy consumption. For proposing new blocks,
nodes must do a large number of computations to find
the solution of the computational puzzle, which results
in huge energy consumption.

• Transaction delay. There exists a transaction delay in Bit-
coin. Nodes should wait for the generation of the next six
blocks in order to confirm the credibility of each block,
the process of which will takes around one hour. So, the
transaction throughput is not high.

• Centralization of computational power. Mining pools
generally have advantages of winning the privileges to
propose new blocks than individuals. Therefore, mining
pools can dominate the processes of building new blocks
in Bitcoin, which violates the decentralization of block-
chain.

In 2016, Turing Award winner Gilad et al. [9] proposed a
new VRF-based consensus protocol called Algorand, which
aims to tackle the problem of low efficiency and high energy
consumption of the PoW-based protocol. Besides, other
new protocols based on Verifiable Random Function (VRF)
[10] have been also introduced recently. VRF is essentially
a (pseudo) RF with a non-interactive verifiable function.
Informally, VRF is such an effective function that it takes a
string x and a secret key sk as inputs and generates a random
output y = F(sk, x) with a corresponding proof � = G(sk, x).

A standard VRF is required to satisfy the following prop-
erties. Firstly, given sk, the output y of F(sk, x) should be
unique and computable on x. Secondly, the output y needs
to be random, i.e., an effective attacker, without knowing sk,
can not distinguish the output y from a random value even
if it is given oracle queries of F(sk, x) and G(sk, x) on any
other point. Finally, anyone who holds the proof � along
with pk can verify that the output y is indeed calculated
correctly on x.

According to the work of Gilad et al. [9], it can be seen
that VRF has some advantages to design efficient consensus
protocols since the unique properties of VRF. We now illus-
trate the main advantages as follows:

• Easy to calculate. Nodes need only to perform VRF func-
tion y = F(sk, x) once, and then compete for the privi-
leges to propose new blocks by the distance between the
VRF’s output y and the preset target threshold T. This
means that nodes with shorter distance should have more
chances to win the privileges. So, VRF has ability to
avoid the repeated calculation processes in the PoW-
based protocol.

• Easy to verify. There exists a proof function � = G(sk, x)
in VRF. The proof � is used to verify the correctness of
the output y on given x. Nodes who hold � and pk can
easily verify that the new block is indeed built by the pro-
poser who holds the corresponding sk. So, VRF is easy
to confirm the privilege of the proposer and the validity
of the block simultaneously.

• Suitable for consensus protocols. VRF has already been
integrated into some new protocols such as Algorand
[9], Ouroboros-Praos [11] and Dfinity [12]. These VRF-
based protocols aim to improve consensus performance
from the aspect of energy consumption, scalability of
blockchain, transaction throughput, etc. Therefore, VRF
is very suitable for designing efficient consensus proto-
cols.

However, the concrete and efficient VRF constructions
are not given in the existing VRF-based protocols, such as
Algorand [9], Ouroboros-Praos [11] and Dfinity [12]. Mean-
while, almost known VRF functions are based on Bilinear
maps, which are constructed on elliptic curves. Comparing

Peer-to-Peer Networking and Applications

1 3

with the elliptic curve cryptosystem used in existing block-
chains, the protocol design based on VRF with Bilinear
maps is more complex, and the mathematics backgrand is
more strict for professional developers. Therefore, in this
paper, we aim to present some simple and practical con-
structions that are suitable for design of efficient consensus
protocols.

1.2 Related work

In 1999, the concept of VRF was first introduced by Micali,
Rabin and Vadhan [10]. They proposed a VRF construction
based on the RSA assumption from a verifiable unpredict-
able function, which employed a Goldreich-Levin hardcore
bit transformation [13]. Dodis et al. [14] gave a more effi-
cient VRF construction on bilinear groups with small input
spaces. This construction was simple without inefficent
Goldreich-Levin transformation, and it was provably secure
under a decisional bilinear Diffie-Hellman inversion assump-
tion. Hohenberger et al. [15] presented a family of VRFs on
bilinear groups, whose security relied on a decisional Diffie-
Hellman exponent assumption. The input space of this kind of
VRF reached exponentially large size by applying a collision-
resistant hash function. Hofheinz et al. [16] constructed the
first VRFs which efficiently achieved both exponential-sized
input space and full adaptive security under a non-interactive,
constant-size assumption. Based on the work in [16], Kohl
[17] proposed a VRF construction with short proofs, which
also satisfied exponential-sized input space and full adaptive
security. They employed partitioning techniques of Bitansky
[18] to effectively reduce the proof size to a logarithmic num-
ber of group elements.

Some researches focused on extending the notion of VRF
to construct some variants of VRF. Brackerski et al. [19]
defined weak VRFs whose pseudorandomness was required
to hold only for randomly selected inputs. In addition, they
gave two concrete constructions of weak VRFs from certified
trapdoor permutations and a computational Diffie-Hellman
assumption, respectively. Fuchsbauer [20] extended the
notion of VRF to constrained VRFs and showed two instan-
tiations, i.e., bit-fixing VRF and circuit-constrained VRF.
Recently, Wang et al. [21] presented a family of Condition-
ally VRFs and showed a direct construction with Boolean
access constraints. Liang et al. [22] defined static aggregate
VRFs and presented a construction over bit-fixing sets with
respect to product aggregation.

Other VRF constructions based on basic cryptography
primitives were presented in recent years. Goyal et al. [23]
demonstrated a generic way of building VRFs from more
basic cryptographic primitives, such as non-interactive
witness-indistinguishable proofs (NIWIs), admissible hash
functions (AHFs), perfectly binding commitments and
constrained pseudorandom functions. They also provided

new constructions of non-interactive commitments from
Learning with Errors (LWE) and learning parity with noise
assumptions. Bitansky [18] presented new VRF construc-
tions from verifiable function commitments and constrained
pseudorandom functions, which relied on NIWIs proof sys-
tem to achieve adaptive security. Brunetta et al. [24] pro-
vided their insights on constructing a lattice-based simulat-
able VRF using non interactive zero knowledge arguments
and dual-mode commitment schemes, and they pointed out
the main challenges that need to be addressed on it. Abraham
[25] proposed a post-quantum VRF scheme from ring signa-
tures using ring LWE and proved its security against known
quantum attacks and quantum oracles. Jager et al. [26] con-
structed a new VRF scheme using computational AHFs, and
it is currently the most efficient VRF with full adaptive secu-
rity in standard model. The variants of AHFs-based VRF
also include Jager’s scheme under balanced AHFs [27] and
Yamada’s scheme under modified AHFs [28].

1.3 VRF‑based consensus protocols

Recently, some new protocols based on VRF have emerged
and been widely employed in practice. Several typical VRF-
based protocols are elaborated as follows:

• Algorand protocol [9], is a novel cryptocurrency
designed to confirm transactions in about one minute. It
employs a new Byzantine agreement protocol to reach a
consensus, which takes a committee as its basic opera-
tion unit. Meanwhile, the core of the protocol is VRF
technique, which is responsible for randomly selecting
proposer and verifier committees in a private and non-
interactive way.

• Ouroboros-Praos protocol [11], is also a VRF-based con-
sensus protocol for the adoption of a new cryptocurrency
called Cardano. Time is divided into several epochs, each
of which is composed of multiple slots. According to the
stake distributions of stakeholders in each epoch, this
protocol uses VRF to randomly select a slot leader from
the stakeholders, so that the slot leader is qualified to
publish a block.

• Dfinity protocol [12]. Similar to Algorand, this protocol
is also operated under a committee. And it contains a
decentralized random beacon, which actually employs
VRF and BLS threshold signature scheme [29] to gen-
erate an unpredictable random seed. Furthermore, the
seed is not only responsible for creating block-makers
and notary committees, but also for determining the pri-
ority ranking of committee members.

From these work, it can be seen that VRF has made some
progresses in the design of blockchain consensus protocols.
Precisely speaking, VRF plays an important role in selecting

 Peer-to-Peer Networking and Applications

1 3

a block proposer based on the randomness and public verifi-
ability of VRF. In addition, VRF has also been applied into
a new blockchain system called DEXON [30] with Proof-
of-Participation (PoP) protocol and a novel Verifiable Byz-
antine Fault Tolerance (VBFT) [31] hybrid algorithm in
Ontology platform, respectively.

1.4 Our contribution

We aim to construct practical and efficient VRF construc-
tions which can be used to improve the performance of
consensus protocol in blockchain. We summarize the main
contributions of our work in this paper as follows:

• We propose three simple and practical VRF constructions
in order to reduce the VRF’s output size as much as pos-
sible. Our VRF construction over RSA (VRF-RSA) is
inspired by one-way permutation built on RSA. Another
two VRF constructions, VRF-DDH and VRF-LHL, are
based on the Decisional Diffie-Hellman (DDH) assump-
tion and Leftover Hash Lemma (LHL) respectively, where
LHL enables an universal hash function to achieve an effec-
tive randomness extractor. As a result, the VRF’s outputs
y and � are continuously improved, e.g., the output size of
VRF-LHL is only 64 bytes for 128-bit security strength.
The computational overheads of Prove and Verify in VRF-
DDH can be reduced to the millisecond level. Moreover,
we give the full security proofs of our constructions.

• Taking VRF-RSA as an example, we provide a general
approach to integrate our VRF constructions with block
structure in blockchain. By replacing PoW-based min-
ing with VRF-based consensus protocol, the VRF-RSA
is applied into cryptographic sortation algorithm in the
famous Algorand [9] to improve the performance of con-
sensus protocol. Besides, three new opcodes are designed
by extending the script interpreter of blockchain, and
then we develop a script pair, scriptProof and scriptHash,
under our VRF constructions to provide secure and effi-
cient block verification. Moreover, our experimental
evaluation results show the proposed VRF constructions
can significantly reduce the computing power of consen-
sus protocol in blockchain.

1.5 Organization

The rest of this paper is organized as follows. We introduce some
basic concepts and preliminaries for VRF in Sect. 2. Next, we
present three simple and practical VRF constructions and pro-
vide the full security analysis of our constructions in Sect. 3. In
Sect. 4, we compare the performance of our VRF constructions
with previous ones. In Sect. 5, we show a specific application of
VRF in blockchain and VRF’s script implementation and per-
formance evaluation. Finally, we conclude this paper in Sect. 6.

2 Preliminaries

2.1 Verifiable random function

VRF was first introduced by Micali, Rabin and Vadhan.
Informally, a VRF acts like a (pseudo) RF, but also contains
a proof of correctness for its output. We now briefly recall
the following standard definition of VRF.

Definition 1 (Verifiable Random Function) Given a func-
tion family F(⋅, ⋅) ∶ {0, 1}in(�) → {0, 1}out(�) , where in(�) and
out(�) are polynomials in security parameter � . we say that
it is a Verifiable Random Function if there exists algorithms
(Setup, Prove, Verify) such that

1. �����(1�) takes as input the security parameter � , and
outputs a pair of keys (sk, pk), where sk is the secret key
and pk is the public key;

2. �����(sk, x) takes sk and a string x ∈ {0, 1}in(�) as inputs,
outputs a pair (y,�) ← (F(sk, x),G(sk, x)) , where y is a
function value and � is a proof of correctness;

3. ������(pk, x, y,�) takes pk, x ∈ {0, 1}in(�) , y ∈ {0, 1}out(�)
and � as inputs, and outputs a bit. It verifies the correct-
ness of y on given x by using the proof � and pk. It out-
puts 1 if the verification succeeds, and 0 otherwise.

Formally, we require that VRF holds the following security
properties:

1. �����������. For all pairs (pk, sk) ∈ Setup(1�) and all
strings x ∈ {0, 1}in(�) , if (y,�) = Prove(sk, x) , there exists
a negligible polynomial � such that

2. ����������. For all pairs (pk, sk) ∈ Setup(1�) and
all strings x ∈ {0, 1}in(�) , there does not exist a tuple
(y1, y2,�1,�2) such that

 for a negligible polynomial �.
3. Pseudorandomness1.For all PPT distinguishers D, there

exists a negligible polynomial � such that

(1)Pr
[
Verify(pk, x, y,�) = 1

]
1 − �(�).

(2)Pr

[
y1 ≠ y2

|||||
Verify(pk, x, y1,�1) = 1,

Verify(pk, x, y2,�2) = 1

]
≤ �(�)

1 Randomness: We say that F(sk, x) and {0, 1}out(�) are statistically
indistinguishable if there exists a negligible statistical difference �
such that
1

2

∑
�
��Pr[F(sk, x) = �] − Pr[{0, 1}out(�) = �]�� ≤ �(�).

Peer-to-Peer Networking and Applications

1 3

More clearly, we illustrate the processing structure of
VRF in Fig. 1, which consists of Prove and Verify modules.
As shown in the figure, the processing can be divided into
evaluation and verification stages. In the evaluation stage,
the Prove module is used to evaluate the value y and the
proof � . Subsequently, the Verify module is responsible for
verifying the correctness of the value y with the proof � and
pk in verification stage. It outputs 1 if the verification is suc-
cessful, and 0 otherwise.

2.2 Hardness problems and complexity
assumptions

We now give the hardness problems and complexity assump-
tions used in our VRF constructions. Hereafter, A is denoted
as a probabilistic polynomial time (PPT) algorithm whose
running time is bounded by the polynomial in the security
parameter �.

We start with the definitions of RSA problem and its
hardness assumption in detail. Formally, the RSA problem
in ℤN is defined as follows:

Definition 2 (RSA Problem) Given {e,N} and a ran-
dom y ∈ ℤN , an algorithm A computes x such that
xe ≡ y mod N , where positive integer N is a product of
two large distinct odd primes, p and q, and e is a randomly
chosen positive integer less than and relatively prime to
�(N) = (p − 1)(q − 1).

We define by AdvRSA
e,N,y

(A) the advantage of an algorithm
A in solving the RSA problem as

The RSA assumption in ℤN is the following.

(3)
|Pr[D(1� ,F(sk, x)) = 1]

−Pr[D(1� , {0, 1}out(�)) = 1]|| ≤ �(�).

(4)AdvRSA
e,N,y

(A) = Pr[A(y,N, e) = x|xe ≡ y mod N].

Definition 3 ((t, �)-RSA Assumption) We say that (t, �)-RSA
assumption holds in ℤN if there is no t-time algorithm A has
advantage at least � in solving the RSA problem in ℤN , i.e.,

Next, let � be a group of prime order p and g be its gen-
erator. We state the DDH problem and its hardness assump-
tion in the group � in a formal way as follows:

Definition 4 (Decisional Diffie-Hellman Problem) Given
a tuple (g, g� , g�) as input, an algorithm A distinguishes g��
from a random value T in � , where � and � are randomly
chosen in ℤq of large prime order q, and q|p.

We define by AdvDDH
g,�,�

(A) the advantage of an algorithm
A in solving the DDH problem as

Correspondingly, the DDH assumption in the group � of
prime order p is the following.

Definition 5 ((t, �)-DDH Assumption) We say that (t, �)-DDH
assumption holds in � if there is no t-time algorithm A has
advantage at least � in solving the DDH problem in � , i.e.,

2.3 Universal hashing and leftover hash lemma

One of our VRF constructions relies on Leftover Hash
Lemma (LHL) [32]. LHL demonstrates that an universal
hash function is almost a good randomness extractor. Next,
we briefly recall the definitions of the universal hashing and
LHL, respectively.

Definition 6 (�-Universal Hashing) A family H of (deter-
ministic) functions h ∶ X → {0, 1}v is a called �-universal
hash family (on space X), if for any x1 ≠ x2 ∈ X , we have
Prh∈H[h(x1) = h(x2)] ≤ � . We say that H is universal when
� = 1∕2v.

Lemma 1 (Leftover-Hash Lemma, LHL) Assume that the
family H of functions h ∶ X → {0, 1}v is a 1+�

2v
-universal hash

family. Then the extractor Ext(x;h)
def
= h(x) is an (m, �)

-extractor , where h is uni form over H and
� =

1

2

√
� +

2v

2m
=

1

2

√
� +

1

2L
 (recall, L = m − v is the entropy

loss). In particular, 1+3�
2

2v
-universal hash functions yield

(v + 2 log(1∕�), �)-extractors.

(5)AdvRSA
e,N,y

(A) ≤ �.

(6)
AdvDDH

g,�,�
(A)

= ||Pr[A(g, g� , g� , g��) = 1] − Pr[A(g, g� , g� , T) = 1]||.

(7)AdvDDH
g,�,�

(A) ≤ �.

Fig. 1 The processing structure of VRF

 Peer-to-Peer Networking and Applications

1 3

3 Constructions of verifiable random
function

In this section, we give three concrete VRF constructions,
whose security are based on the RSA assumption, the
DDH assumption and LHL lemma, respectively. In order to
improve the performance in VRF-based consensus proto-
col, the storage overheads of the proof � have fallen stead-
ily among three VRF constructions. Moreover, we provide
complete security analysis of our three VRF constructions.

3.1 VRF construction over RSA

We here illustrate the VRF construction over RSA (VRF-
RSA). Let Hash be a hash function which maps an element
in ℤN to an element in ℤN , and the operator ⊕ is denoted as
a XOR operation. Our VRF-RSA that contains three poly-
nomial-time algorithms is as follows:

1. �����(1�). It takes the security parameter � as input, and
then outputs the secret key sk = {d,N} and the public
key pk = {e,N}.

2. �����(sk, x). It takes an integer x and the secret key sk as
inputs, and then generates a value y with a correspond-
ing proof � , which are defined as

3. ������(pk, x, y,�). It verifies whether the value y is cor-
rectly computed on given x by using the proof � and the
public key pk. Specifically, this algorithm will check

(8)
{

y = F(sk, x) = Hash(𝜋 ⊕ x),

𝜋 = G(sk, x) ≡ xd mod N.

 If two above equations hold, the algorithm outputs 1,
and 0 otherwise.

For clarity, the processing structures of Prove and Verify
modules for VRF-RSA are illustrated in Fig. 2, respec-
tively. In Fig. 2a, we display the processing of the Prove
module in evaluation stage. Obviously, the forward pro-
cessing is entirely consistent with its inverse. Similarly,
the processing of the Verify module in verification stage
is shown in Fig. 2b. It is easy to see that the top half
of the processing structure for the Verify module is the
same with the Prove module in Fig. 2a. So the two mod-
ules should have common algorithm. Subsequently, the
Verify module will check whether x1 = x and y1 = y hold
simultaneously in oder to verify the correctness of y on
given x.

Formally, we provide the Algorithm 1 to illustrate the
common processing of Prove and Verify modules, where
Mod() is denoted as a modular function and BitXor() is
denoted as a XOR function. The inputs of this algorithm are
� and � , and its outputs are � and � . However, both inputs
and outputs are actually different in these two modules: the
inputs of the Prove module are x and d, and its outputs are y
and � . But for the Verify module, the inputs are � and e, and
its outputs are y and x. Therefore, four variants, � , � , � and � ,
represent different meanings, respectively. Specifically, two
variants, � and � , represent x and d in the Prove module, as
well as two outputs, � and � , indicate y and � , respectively.
Similarly, in the Verify module, four variants, � , � , � and � ,
represent � , e, y and x, respectively.

(9)
{

𝜋e mod N ≡ x,

Hash(𝜋 ⊕ x) = y.

Fig. 2 The processing structures
of Prove and Verify modules for
VRF-RSA

(a) (b)

Peer-to-Peer Networking and Applications

1 3

We now prove that our VRF-RSA satisfies the required
security properties, as follows:

1. �����������. For all pairs of keys (pk = {e,N}, sk =

{d,N}) ∈ Setup(1�) and any integer x, from the defi-
nitions of F(sk, x) and G(sk, x), it follows immedi-
ately that �e mod N ≡ (xd mod N)e mod N ≡ x and
Hash(𝜋 ⊕ x) = y . In other words, the value y enables to
be deterministically obtained from the proof � . We have
thus Verify(pk, x, y,�) = 1.

2. ����������. Consider the public key pk = {e,N} , an
integer x, and pairs of values (y�,��) ∈ (ℤN ,ℤN) that
satisfy Verify(pk, x, y�,��) = 1 , for both � ∈ {1, 2} .
It suffices to show that y1 = y2 . Specifically, the
first verification equation yields �e

�
mod N ≡ x ,

which by the properties of RSA signature scheme
implies that �� ≡ xd mod N , as an one-way permuta-
tion, for both � ∈ {1, 2} . Subsequently, the second
verification equation yields y𝜌 = Hash(𝜋𝜌 ⊕ x) =

Hash(xd mod N ⊕ x) for both � ∈ {1, 2} , which implies
y1 = Hash(xd mod N ⊕ x) = y2 . It means that there is
only one unique y on given x that can be proved to be
valid with the proof �.

3. ����������������. Regarding the proof of pseudoran-
domness property, we present the following Theorem 1.

Theorem 1 Suppose the (t, �)-RSA assumption holds in ℤN .
Our VRF-RSA is a (t�, �)-secure VRF, where t� ≈ t , i.e., there
not exists a PPT adversary can distinguish VRF’s output
from a random value in t′-time with advantage � , thereby
breaking the RSA assumption.

Proof. For the sake of contradiction, suppose there exists
an adversary A , running in time t′ , can distinguish the func-
tion F(sk, x) from a random value in ℤN with non-negligible
probability � , then we will build a simulator B to break the
RSA assumption with non-negligible probability by using
the advantage of A.

Setup. B generates the public key pk = {e,N} and the
secret key sk = {d,N} , then sends the public key pk to
A . Regarding a challenge z∗ which A wants to invert, B
processes it as follows:

– If the bit length of z∗ is strictly less than that of N,
then define z� = z∗;

– Otherwise, try repeatedly a random � ∈ ℤN until the
bit length of z∗�e mod N is less than that of N, then
define z� ≡ z∗�e mod N.

Oracle Queries. Without loss of generality, we assume
that A makes at most Q queries and never repeats que-
ries. Once A issues a query on xi (1 ≤ i < Q) to B , then B
responses to the query xi as follows:

– If the query xi = x∗ (x∗ is a challenge query), then B
outputs fail;

– Otherwise, B processes as follows:

1. define xi = zi , then response with zi;
2. define �i = ci , then response with ci;
3. draw a uniformly random value ui , program

Hash(ci ⊕ zi) = ui and yi = ui , then response
with ui.

 Thus, B will eventually send {zi, ci, ui} as response values
of the query xi to A in this stage.
Challenge Query. A issues a challenge query on x∗ which
corresponds to the inverse challenge z∗ . If the challenge
query is different from x∗ , then B outputs fail. Otherwise,
B certainly outputs z� ≡ (�∗)e mod N , where �∗ is the
RSA inverse of z′ . Besides, B defines z� ≡ z∗�e mod N .
So the RSA inverse of z∗ enables to be obtained by divid-
ing the answer with � , i.e., the RSA inverse of z∗ is �∗∕�.
Guess. Eventually A outputs its guess b′ , and then B out-
puts the same bit b′ as its guess.
Success probability. We now analyze the probability that
B wins the game. Since queries to Hash are responded
consistently if Hash is programmed on the query and are
answered randomly otherwise, so the probability that the
Hash query table contains �∗ , which is the RSA inverse of
z′ , is � . We have thus completed the proof of Theorem 1.

In literature [33], Goldberg et al. also proposed an RSA-
based VRF scheme (called GVPR-VRF). In the aspect of
construction, the output expression of GVPR-VRF is defined
as y = Hash(�) , but our VRF-RSA scheme improves it into
y = Hash(𝜋 ⊕ x) . This is the main difference between these
two schemes. Aiming to the difference, we analyze these two
schemes from the aspects of strict expression and forgery
resistance.

Firstly, considering x is the input of F(sk, x), the output y
of F(sk, x) should be correlated with x according to the VRF
definition. From the expression y = Hash(�) in GVPR-VRF,
the output y does not establish a direct correlation with x, but
employs a proof � to establish the indirect correlation with x.
Instead, the expression y = Hash(𝜋 ⊕ x) of VRF-RSA binds

 Peer-to-Peer Networking and Applications

1 3

� and x by using XOR operation, so as to establish the direct
correlation between x and y. Considering such a direct cor-
relation implies the uniqueness of VRF, it indicates that our
VRF-RSA complies strictly with the VRF definition.

Secondly, VRF forgery is a serious attack that an adver-
sary finds pairs (x, y,�) to pass VRF verification after learn-
ing some valid instances. According to the expressions
y = Hash(�) and y = Hash(𝜋 ⊕ x) , it is easy to see that the
forgery attack may originate from hash collision for these
two schemes. Since the hash function is a mapping from
large input space to small output space, the hash collision is
inevitable, i.e., there must exist two distinct inputs to pro-
duce identical hash value. For y = Hash(�) in GVPR-VRF,
we assume that an adversary finds two distinct proofs, �
and �′ , which produce a hash collision (e.g., SHA-256 has
been attacked by [34]). According to x = �e mod N and
x� = ��e mod N , the adversary can easily find two distinct
VRF inputs x and x′ corresponding to the identical output
y. Thus, any adversary, without knowing the private key sk,
can forge two valid instances, (x, y,�) and (x�, y,��) , that
pass VRF verification as long as the adversary finds a hash
collision.

On the other hand, the output expression of VRF-RSA is
defined as y = Hash(𝜋 ⊕ x) = Hash(xd ⊕ x) . Assuming two
distinct inputs, z and z′ , are found to produce a hash colli-
sion, an adversary tries to find x, x′ to meet z = xd ⊕ x and
z� = x�d ⊕ x� . Thus, we easily get x = (z⊕ x)e mod N and
x� = (z� ⊕ x�)e mod N . Further, the adversary needs to solve
these two equations if he wants to find two distinct VRF inputs
x and x′ corresponding to the identical output y. Let r = z⊕ x
and r� = z� ⊕ x� . The above equations are transformed into
z⊕ r = re mod N and z� ⊕ r� = r�e mod N . However, it is
difficult to solve r and r′ to get x and x′ , even if sieve method
needs O(

√
N) computational complexity to solve it2. In other

words, for an effective VRF forgery attack, the adversary
needs to not only find a hash collision, but also solve the above
problem about O(21536) operations for N is 3072 bits. So,
VRF-RSA has stronger forgery resistance than GVPR-VRF.

3.2 VRF construction over DDH

The size of the proof � in VRF-RSA is too large since its size
is affected by the security strength of RSA. So, we propose the
VRF construction over DDH (VRF-DDH) with shorter proof.
Let H1 be a hash function that maps an element in � of prime
order p and an element in ℤq of prime order q to an element
in ℤq , and let H2 be a hash function which maps an element in
ℤq to an element in � . Our VRF-DDH is as follows:

1. �����(1�). It takes the security parameter � as input, and
outputs the secret key sk = {g, p, q, h = g� , �, �} and the
public key pk = {g, p, q, h = g� , � = g�} , where � and �
are randomly chosen in ℤq.

2. �����(sk, x). It takes an integer x and the secret key sk as
intputs, and then generates a value y with a correspond-
ing proof � . Here we firstly define the proof � as follows:

• Compute a hash function c = H1(h
� , x);

• Compute z ≡ � + c∕� mod q;
• Define the proof � as a binary tuple

 where the size of � is 2 log(q) bits.
 Next, we define the value y for the integer x as

3. ������(pk, x, y,�). It verifies whether the value y is correctly
computed on given x with the proof � and the public key pk.
Specifically, two verification equations are given as follows:

 If two above verifications succeed, this algorithm out-
puts 1, and 0 otherwise.

Subsequently, the Algorithms 2 and 3 are presented to clearly
illustrate the processing of the Prove and Verify modules,
respectively. Obviously, the two algorithm processes are rela-
tively simple and need only perform two hash operations. Thus,
our VRF-DDH should have low computational overhead.

(10)� = G(sk, x) = (z, c),

(11)y = F(sk, x) = H2(z⊕ x).

(12)
{

H1(h
zg−c, x) = c,

H2(z⊕ x) = y.

2 For example, Shanks algorithm, one of the famous sieve methods,
can realize the computational complexity of O(

√
N) to find out r and

r
′.

Peer-to-Peer Networking and Applications

1 3

We now prove that our VRF-DDH satisfies the required
security properties, as follows:

1. �����������. For all pairs of keys (pk = {g, p, q, h = g� ,

� = g�}, sk = {g, p, q, h = g� , �, �}) ∈ Setup(1�) and any
integer x, from the definitions of F(sk, x) and G(sk, x),
we can easily get

 So it follows immediately that

 and H2(z⊕ x) = y . That is, the value y enables to be
deterministically obtained from the proof � = (z, c) , we
have thus Verify(pk, x, y,�) = 1.

2. ����������. Assume that there exists the public key
pk = {g, p, q, h = g� , � = g�} , an integer x, and pairs
of values (y�,�� = (z�, c�)) ∈ (𝔾,ℤq) that satisfy
Verify(pk, x, y�,��) = 1 , for � ∈ {1, 2} . It is obvious to
see that y1 = y2 . Specifically, from the definition of the
proof G(sk, x), we can get

where � ∈ {1, 2} . Furthermore, the second verifica-
tion equation yields y𝜌 = H

2

(z𝜌 ⊕ x) = H
2

((𝛽 + H
1

(g𝛽 , x)∕𝛼)⊕ x) for both � ∈ {1, 2} , which implies
y1 = H2((𝛽 + H1(g

𝛽 , x)∕𝛼)⊕ x) = y2 . Thus there is only
one unique y on given x that can be proved to be valid
with the proof �.

3. ����������������. We present the following Theo-
rem 2 with respect to the proof of pseudorandomness
property.

Theorem 2 Suppose the (t, �)-DDH assumption holds in
a group � of prime order p. Our VRF scheme is a (t�, ��)
-secure VRF with n-bit input, where t� ≈ t and � ≥ 1

2n
�′.

Proof. For the sake of contradiction, suppose there exists
an adversary A , running in time t′ , can distinguish the func-
tion F(sk, x) from a random element r in group � with non-
negligible advantage �′ , i.e., AdvDDH

g,�,�
(A) ≥ �� , then we will

build an simulator B that uses the advantage of A to break
the DDH assumption with non-negligible probability.

– Input to the reduction. The simulator B is given a
tuple (g, g� , g� , T) ∈ � , where T is either g�� ∈ � or a
random element r in � . Finally, B outputs 1 if T = g��
and 0 otherwise.

– Setup. We assume that A will issue a challenge query on
x∗ to distinguish F(sk, x∗) from a random element r in � .
B generates the public key pk = {g, p, q, h = g� , � = g�}

(13)hzg−c = h�+c∕�g−c = h�(g�)c∕�g−c = h� .

(14)H1(h
zg−c, x) = H1(h

� , x) = c

(15)z� = � + c�∕� = � + H1(g
� , x)∕�,

and the secret key sk = {g, p, q, h = g� , �, �} , then sends
the public key pk to A.

– Oracle Queries. Without loss of generality, we assume
that A makes at most Q queries and never repeats que-
ries. Once A issues a query on xi (1 ≤ i < Q) to B , then
B responses to the query xi as follows:

• If the query xi = x∗(x∗ is challenge query), then
B aborts and outputs a uniformly random guess
b� ∈ {0, 1};

• Otherwise, B processes as follows:

1. choose a uniformly random value ci from ℤq ,
program ci = H1(h

� , xi) , then response with ci;
2. define zi ≡ � + ci∕� mod q , then response with

zi;
3. draw a uniformly random value ui from ℤq , pro-

gram H2(zi ⊕ xi) = ui and define yi = ui , then
response with ui.

 Thus, B will send a tuple (zi, ci, ui) as response
values of the query xi to A on this stage.

– Challenge Query. A issues a challenge query on x∗ . If
the challenge query is different from x∗ , then B aborts
and outputs a uniformly random guess b� ∈ {0, 1} . Oth-
erwise, B outputs a value T∗ which is either F(sk, x∗) or
a random element r in � , then sends it to A.

– Guess. Finally, A outputs a guess b′ according to

 and then B outputs the same b′ as its guess.
– Success probability. We now analyze the probability that B

wins the game. Let Bwin denote the event that B wins the
game. Similarly, Babort and Babort are denoted as the events
that B aborts and performs the simulation, respectively. On
stage of challenge query, considering that B aborts only when
the challenge query is different from x∗ , we have thus
Pr[Babort] = 1 − 1∕2n . Moreover, if B aborts, then it outputs
a uniformly random bit b� ∈ {0, 1} . It means that the success
probability of B in this case relies on a flip of a coin
b� ∈ {0, 1} , so we have Pr[Bwin|Babort] = 1∕2 . On the other
hand, if B does not abort, then B can calculate c∗ = H1(T , x

∗) ,
z∗ ≡ � + c∗∕� mod q and F(sk, x∗) = H2(z

∗ ⊕ x∗) in
sequence since T = g�� . It is obvious that F(sk, x∗) can be
obtained from T. So, B wins the game in this case with the
same advantage as A , whose non-negligible advantage is �′ .
Thus we have Pr[Bwin|Babort] = 1∕2 + AdvDDH

g,�,�
(A) ≥ 1∕2 + �� .

Thus, the probability that B wins the game is

(16)b
�

=

{
0, T∗ = r

1, T∗ = F(sk, x∗)

 Peer-to-Peer Networking and Applications

1 3

 It means that B wins the game with non-negligible
advantage � ≥ 1

2n
�′ . However, since the (t, �)-DDH

assumption holds in group � , there not exists such a sim-
ulator B that wins the game with non-negligible advan-
tage � . In other words, there not exists an adversary A ,
running in time t′ , can distinguish the function F(sk, x)
from a random element r in group � with non-negligible
advantage �′ , so the theorem holds. We complete the
proof of Theorem 2.

3.3 VRF construction over LHL

We now present the VRF construction over LHL (VRF-
LHL) in order to further reduce the storage overhead of VRF.
Let H3 be a universal hash function that maps an element in
ℤq to an v-bit bitstring. Our VRF-LHL that contains three
polynomial-time algorithms is as follows:

1. �����(1�). It takes the security parameter � as input,
and outputs the secret key sk = {g, p, q, �, �} and pub-
lic key pk = {g, p, q, h = g� , � = g�},where � and � are
randomly chosen in ℤq.

2. �����(sk, x). It takes an integer x and the secret key sk as
inputs, and then generates a value y with a correspond-
ing proof � , which are defined as

 where the size of � is log(q) bits.
3. ������(pk, x, y,�). It verifies whether the value y is cor-

rectly computed on given x by using the proof � along
with the public key pk. Specifically, this algorithm will
check

 If two above equations holds, this algorithm outputs 1,
and 0 otherwise.

We also provide the Algorithms 4 and 5 to illustrate
the processing of the Prove and Verify modules, respec-
tively. Obviously, the two algorithms are rather simple in
structure and easy to be implemented in practice. So, our
VRF-LHL have high computational efficiency.

(17)

Pr[Bwin] =Pr[Bwin|Babort] ⋅ Pr[Babort]+

Pr[Bwin|Babort] ⋅ Pr[Babort]

≥
1

2
⋅ (1 −

1

2n
) + (

1

2
+ ��) ⋅

1

2n

=
1

2
+

1

2n
��.

(18)
{

y = F(sk, x) = H3(𝜋 ⊕ x),

𝜋 = G(sk, x) ≡ (x − 𝛼𝛾)∕𝛽 mod q,

(19)
{

𝛾𝜋h𝛾 ≡ gx mod p,

H3(𝜋 ⊕ x) = y.

We now prove that our VRF-LHL satisfies the required
security properties, as follows:

1. �����������. For all pairs of keys (pk = {g, p, q, h = g� ,

� = g�}, sk = {g, p, q, �, �}) ∈ Setup(1�) , and any inte-
ger x, from the definitions of F(sk, x) and G(sk, x), it
follows immediately that

and H3(𝜋 ⊕ x) = y . That is, the value y can be deter-
ministically obtained from the proof � , we have thus
Verify(pk, x, y,�) = 1.

2. ����������. Assume that there exists the pub-
lic key pk = {g, p, q, h = g� , � = g�} , an integer x,
and pairs of values (y�,��) ∈ (𝔾,ℤq) that satisfy
Verify(pk, x, y�,��) = 1 , for both � ∈ {1, 2} . It is obvious
to see that y1 = y2 . Specifically, from the first verifica-
tion equation, we enable to yield

and further get �� ≡ (x − ��)∕� mod q for both
� ∈ {1, 2} according to the multiplication oper-
ation rules of the same base power. Mean-
while, the second verification equation yields
y𝜌 = H3(𝜋𝜌 ⊕ x) = H3((x − 𝛼𝛾)∕𝛽 mod q⊕ x) f o r

(20)��h� = (g�)(x−��)∕�(g�)� ≡ gx mod p,

(21)���h� = g���g�� = g���+�� ≡ gx mod p,

Peer-to-Peer Networking and Applications

1 3

both � ∈ {1, 2} , which implies y
1

= H
3

((x − ��)∕�

modq⊕ x) = y
2

 . So, there is only one unique y on given
x that can be proved to be valid with the proof �.

3. ����������. The famous LHL lemma simply states that
a randomness extractor can be constructed from an uni-
versal hash family, which provides an appropriate method
to prove the randomness property. Specifically, we pro-
pose Theorem 3 with respect to the randomness proof.

Theorem 3 Suppose the H3 is a 1∕2v-universal hash function,
then our VRF scheme is a (m, �)-secure VRF with n-bit input
under LHL, where � ≥ 1

2

√
2v−m.

Proof. According to LHL, one universal hash function
leads to an efficient randomness extractor. Specifically, if
X is a distribution of min-entropy m over space X , H is
a family of functions from X to {0, 1}v , and H is a 1∕2v
-universal hash function randomly chosen from H , then we
will construct an (m, �)-extractor that satisfies the statistical
distance between H(X) and the uniform distribution Uv on
{0, 1}v is bounded by 1

2

√
2v−m . That is, there not exists an

algorithm can distinguish the extracted randomness H(X)
from uniform distribution Uv with advantage greater than
� =

1

2

√
2v−m . Therefore, according to LHL, if the H3 in our

VRF scheme is a 1∕2v-universal hash function, then we will
achieve a (m, �)-secure VRF with n-bit input. That is, there
not exists an adversary can distinguish the function F(sk, x)
from a random value with advantage greater than � . We com-
plete the proof of Theorem 3.

4 Comparisons

In this section, we compare our three VRF schemes, VRF-
RSA, VRF-DDH and VRF-LHL, with two representative
schemes proposed in the literature [14, 26] in terms of space

and computation complexity. The comparison results are
summarized in Table 1.

Now, let us explain some notations used in Table 1. For
analysis of storage overheads, |ℤN| , |ℤq| , |�| and |�T | rep-
resent the size of elements in groups ℤN , ℤq , � and �T ,
respectively. To measure the computational cost, we denote
by [H] the cost of a hash operation. Similarly, the cost of an
exponential operation in ℤN and � are denoted as [EN] and
[Ep] , respectively. Besides, the cost of calculating bilinear
map on elliptic curve is denoted as [B] in the schemes [14,
26]. We omit the algebraic calculation in ℤq since it is very
efficient.

In the schemes [14, 26], assuming that the bilin-
ear map e ∶ � × � → �T is constructed on the curve
y2 ≡ x3 + x mod p over the field �p for some prime
p ≡ 3 mod 4 , where � and �T are two multiplicative groups
of order q and the integer q is a prime factor of p + 1 . Under
128-bit security strength, it is required that the RSA modulus
N is 3072 bits, i.e., |ℤN|=3072 bits. Correspondingly, the
size of elements in � is also 3072 bits, i.e., |�| = 3072 bits.
When the embedding degree of the curve is 2, the size of
elements in �T should be 6144 bits, i.e., |�T | = 6144 bits.
The prime q of the cyclic subgroup ℤq needs only to be 256-
bit integer, i.e., |ℤq| = 256 bits.

From Table 1, it can be seen that the schemes [14, 26]
construct their VRFs from bilinear map primitives, while
our three schemes are directly based on RSA, Schnorr and
ELGamal signatures, respectively. The storage overheads of
four major entities, the secret key sk, the public key pk, the
proof � and the VRF’s output y, are also listed in Table 1. In
the scheme [26], it is easy to see that the sizes of three enti-
ties, sk, pk and � , are linear correlation with security strength
n, but y is of a fixed size. In addition, all of the four entities
are still fixed size in the scheme [14] and our schemes. As
shown in Table 1, the storage overheads of sk and pk in our
schemes are slightly larger than these of [14] but smaller

Table 1 Performance comparisons of our three VRF schemes with previous schemes

Item [26] [14] VRF-RSA VRF-DDH VRF-LHL

Size sk (2n + 5)|ℤq| |ℤq| 2|ℤN | 2|ℤq| 2|ℤq|
pk (2n + 7)|�| |�| 2|ℤN | 2|�| 2|�|
� (2n + 4)|�| |�| |ℤN | 2|ℤq| |ℤq|
y |�T | |�T | |ℤN | |�| |�|

Overhead sk 8352B 32B 768B 64B 64B
pk 100992B 384B 768B 768B 768B
� 99840B 384B 384B 64B 32B
y 768B 768B 384B 384B 384B

Computing time Prove [H] + (2n + 5)[Ep] + [B] [Ep] + [B] [H] + [EN] 2[H] + [Ep] [H]
Verify [H] + (4n + 6)[Ep] + 3[B] [Ep] + 3[B] [H] + [EN] 2[H] + 2[Ep] [H] + 3[Ep]

Cryptography primitive Bilinear map on elliptic
curve

Bilinear map on elliptic
curve

RSA signature Schnorr signature ELGamal signature

 Peer-to-Peer Networking and Applications

1 3

than [26] when n is 128 bits. However, the storage overheads
of � and y in our schemes are much smaller than these of the
schemes [14, 26]. For example, the storage overheads of �
and y in VRF-LHL are only 32 and 384 bytes, respectively.
Our VRF-LHL significantly improves both of the sizes of �
and y. Therefore, the comparison results indicates that our
schemes have lower storage overheads in practice.

Next, we compare the computation complexity of Prove
and Verify algorithms. Obviously, the computing time of
Prove and Verify in [14] are significantly smaller than these
of [26], which are linear correlation with n. Moreover, both
Prove and Verify of their schemes require high computa-
tional cost since they all use bilinear map on elliptic curve.
However, our VRF schemes only involve exponential and
hash operations in single group without bilinear map. For
example, the Prove in VRF-DDH only needs to perform one
exponential operation in � and two hash operations, so that
its computational overhead is [Ep] + 2[H] . So, our schemes
should have lower computational overheads.

5 Application of VRFs in blockchain

In this section, we show a specific application of our VRF
constructions in efficient consensus protocol of block-
chain. Specifically, we demonstrate the detailed process of
our VRF-based consensus protocol design and its applica-
tion in Algorand [9]. A general approach is also illustrated
to integrate our VRF constructions with block structure in
blockchain. Besides, we show a script implementation of
our VRF constructions in blockchain. Further, the experi-
mental evaluation of our VRF constructions is conducted
in terms of storage and computational overheads. Finally,
we compare the VRF scheme used in Algorand with our
VRF-LHL scheme from the aspects of performance and
security.

5.1 VRF‑based consensus protocols

In order to address the problem of low efficiency and high
energy consumption in the PoW-based protocol of Bitcoin,
Turing Award winner Gilad et al. [9] proposed a new VRF-
based consensus protocol called Algorand in 2016. Roughly
speaking, Algorand uses a cryptographic sortation algo-
rithm to select committee members, which are responsible
for completing consensus process on some candidate block.
Figure 3 illustrates the consensus process based on the cryp-
tographic sortation algorithm in Algorand.

Algorand consensus [9] is mainly divided into two stages,
as shown in Fig. 3. In the first stage, the cryptographic sorta-
tion algorithm will be executed to randomly choose a small
fraction of users from the entire network in a private and

non-interactive manner, thereby forming a proposer com-
mittee whose members are in charge of proposing new can-
didate blocks. In the second stage, another subset of users
will be randomly selected to form a verifier committee based
on the algorithm, then the members reach BA* consensus on
one of the proposed candidate blocks.

Obviously, the cryptographic sortation algorithm, that
can ensure the randomness of the selected committee
members, is required to be executed at the beginning of
each stage in Algorand [9]. The algorithm implementa-
tion mainly relies on VRF, which is essentially an efficient
RF with a non-interactive verifiable mechanism. Instead
of PoW-based mining, using VRF can efficiently avoid
the repeated calculations of nodes, randomly select block
proposers, and easily verify the proposed block. Therefore,
VRF is very suitable for designing efficient consensus pro-
tocols in blockchain.

We now give a general approach to integrate our VRF
constructions with block structure in blockchain. Generally
speaking, in the design of VRF-based protocols, nodes are
required to implement VRF which takes a secret key sk and
data x as inputs and generates a unique y and a proof � .
Figure 4 illustrates the integration of our VRF constructions
with the block header in the blockchain.

Specifically, as shown in Fig. 4, the nNonce field is used to
store � , which acts as the proof of the block. The fields except the
nNonce in the block header is used to generate x together, i.e.,
x=nVersion||hashPrevBlock||hashMerkleRoot||nTime||nBits,
where || denotes the concatenation operator. The VRF’s output
y is stored in the hashPrevBlock field. In addition, sk and pk are
stored in the wallet of the node and the scriptPubkey field (see
Fig. 5) of the coinbase transaction in the block, respectively.

Next, taking VRF-RSA as an example, we demonstrate
the detailed process of the VRF-based consensus protocol
design as follows:

Step 1. The node collects pending transactions of the
whole network within a period of time, and then adds
a coinbase transaction which is used for issuing new
rewards. The secret key sk = {d,N} is stored in its wallet,
and the corresponding pk = {e,N} is filled in the script-
Pubkey field. Next, the node verifies and packages these
transactions.

Step 2. The node calculates the hashMerkleRoot of
these transactions, and then it fills the informations of the
nVersion, hashPrevBlock, nTime and nBits fields. Next,
the node calculates the concatenation of these fields to
obtain x.

Step 3. The node calculates � ≡ xd mod N by using
sk = {d,N} , then writes � into the nNonce field.

Step 4. The node uses the double SHA-256 to calculate
the output of the block header, i.e., y = Hash(𝜋 ⊕ x) . Even-
tually, the node forms a candidate block.

Peer-to-Peer Networking and Applications

1 3

Subsequently, our VRF construction can be applied
into the cryptographic sortation algorithm, which helps to
randomly select the proposer and verifier committees in
Algorand. Once a candidate block is proposed by the pro-
poser committee and is broadcast on the entire network, the
verifier committee can verify the validity of this block based
on the verifiable mechanism in VRF. In other words, the
verifiers who hold � and pk can confirm that the proposer
indeed has the privilege to propose the block.

More specifically, the workflow of the block verification
is described as follows: Firstly, the verifier calculates x based
on the block header, and then obtains � and y that are stored
in the nNonce and hashPreBlock fileds, respectively. Sec-
ondly, the verifier gets the pk = {e,N} of the proposer from
the scriptPubkey field in the coinbase transaction. Finally,
the verifier will check whether the equations �e mod N ≡ x
and y = Hash(𝜋 ⊕ x) holds. If these two equations holds,
then the verifier confirms that the block proposer has the
privilege and the block is valid.

5.2 Improvement of scripting system

Blockchain script is a simple, Forth-like, stack-based pro-
gram, which is specifically designed for transaction verifi-
cation. The scripting language is intentionally not Turing
Complete, i.e., it has no loops or complex flow control capa-
bilities. Such a restricted script can easily resist attacks with
malicious code so as to ensure the security and efficiency
of blockchain transactions. Besides, the script is automati-
cally executed by the interpreter in blockchain node, which
significantly reduces user-side computational overheads. For

Fig. 3 The consensus process
based on the cryptographic sor-
tation algorithm in Algorand

Fig. 4 The integration of our VRF constructions with the block
header in blockchain Fig. 5 Storage location of pk in coinbase transaction

 Peer-to-Peer Networking and Applications

1 3

example, Bitcoin uses such a scripting system to realize the
cryptographic process of transactions. Meanwhile, five dif-
ferent types of signature scripts are designed to increase the
flexibility of cryptographic constructions. In view of this, we
can complete the execution of VRF algorithm based on the
scripting system so as to provide secure and efficient block
verification in the consensus process.

The structure of blockchain script is relatively simple and
flexible. Generally, a script consists of multiple data values
and operators, where the data values are enclosed in angle
brackets and the operator names start with the string “OP_”.
The operator is encoded in a single byte, and the byte value
is called the opcode of the operator. For example, the most
common signature script, Pay to Public Key Hash (P2PKH),
is defined in Bitcoin transaction as

The P2PKH script includes two parts, scriptSig and script-
Pubkey, which are used to verify the validity of a transaction.
The values, corresponding to ⟨sig⟩ , ⟨PubK⟩ and ⟨PubKHash⟩ ,
will be pushed onto the stack, and the opcodes, OP_DUP,
OP_HASH160, OP_EQUALVERIFY and OP_CHECK-
SIG, are used to invoke specific functions. For example, the
OP_DUP is a duplication operator that duplicates the top
stack item.

In order to automatically implement block verification
based on VRF-RSA, three new opcodes are required to be
defined and some existing opcodes are utilized, as shown in
Table 2. The new opcode, OP_EXP _MOD, is a modular
exponential operator. In addition, another two new opcodes,
OP_RSA_PK and OP_VRF _INPUT, are used to obtain
RSA’s public key pk = (e,N) from the scriptPubkey field in
coinbase transaction (see Fig. 5) and the VRF’s input x from

⟨sig⟩⟨PubK⟩
⏟⏞⏞⏟⏞⏞⏟

scriptSig

OP_DUP OP_HASH160 ⟨PubKHash⟩
OP_EQUALVERIFY OP_CHECHSIG

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
scriptPubKey

.

the block header (see Fig. 4), respectively. Then, the block
verification script based on VRF-RSA is defined as follows:

Obviously, the script consists of two parts, scriptProof
and scriptHash. Specifically, the validity of the VRF’s input
x can be automatically checked by executing scriptProof,
which is stored in the nNonce field of the block header.
Combined with scriptProof, scriptHash can be used to verify
the correctness of the VRF’s output y and stored in the hash-
PreBlock field of the block header. Obviously, the script is
responsible for automatic execution of Verify algorithm in
VRF, which helps to realize more secure and efficient block
verification.

Next, we illustrate the execution process of the block veri-
fication script. The stack state during the script execution is
shown in Table 3. The script is processed from left to right
and its execution proceeds as follows:

Step 1-5. The stack is initialized and emptied, then the
proof ⟨�⟩ is pushed onto the stack and duplicated by the
OP_DUP operator. Next, the OP_RSA_PK operator obtains
RSA’s public key ⟨e⟩ and ⟨N⟩ from the scriptPubkey field
in coinbase transaction (see Fig. 5) and pushes them onto
the stack. Then, the OP_EXP_MOD operator calculates
⟨�e mod N⟩ and then pushes it onto the stack.

Step 6-8. ⟨�e mod N⟩ is duplicated by the OP_DUP
operator, then the OP_VRF_INPUT operator calculates the
VRF’s input x from the block header (see Fig.4) and pushes
it onto the stack. Next, the OP_EQUALVERIFY operator
compares ⟨�e mod N⟩ with ⟨x⟩ . If they are equal, the script
execution proceeds. Otherwise, it terminates with an error.

Step 9-10. The OP_XOR operator performs a XOR
operation on ⟨�⟩ and ⟨�e mod N⟩ . Next, the output of the

⟨�⟩ OP_DUP OP_RSA_PK OP_EXP_MOD

OP_DUP OP_VRF_INPUT OP_EQUALVERIFY

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
scriptProof

OP_XOR OP_HASH256

⟨y⟩ OP_EQUALVERIFY

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
scriptHash

.

Table 2 The definitions of existing and new added opcodes in the block verification script

Type Word Opcode Input Output Description

Existing opcode OP_DUP 0x76 a a, a Duplicates the top stack item a.
OP_XOR 0x86 a, b out Calculates Boolean XOR of a and b.
OP_EQUAL 0x87 a, b True/false Returns 1 if a and b are equal, 0 otherwise.
OP_EQUALVERIFY 0x88 a, b None/fail The script execution proceeds if a and b are equal, it terminates with

an error otherwise. Note that a and b are finally removed from the
stack.

OP_HASH256 0xaa in hash The input is hashed two times with SHA-256.
New opcodes OP_RSA_PK 0xb1 None e, N Gets RSA’s public key {e,N} from the scriptPubkey field in coinbase

transaction, then e and N are pushed onto the stack.
OP_VRF_INPUT 0xb2 None VRF’s input x Calculates VRF’s input x from the block header, then x is pushed

onto the stack.
OP_EXP_MOD 0xb3 a, b, c out Pops the top three items a, b and c, then b to the power of a under

modulus c is pushed onto the stack.

Peer-to-Peer Networking and Applications

1 3

SHA-256 of ⟨𝜋 ⊕ 𝜋e mod N⟩ is generated and pushed onto
the stack by the OP_HASH256 operator.

Step 11-12. The VRF’s output y is pushed onto the stack.
Next, the OP_EQUAL operator pops up and compares
⟨Hash(𝜋 ⊕ 𝜋e mod N)⟩ with ⟨y⟩ . If they are equal, a value
True is pushed onto the stack. It means that the block veri-
fication is successful. Otherwise, False is pushed onto the
stack, the verification fails.

5.3 Performance analysis

We now analyze the performance of our VRF constructions in
the design of blockchain consensus protocols in terms of stor-
age and computational overheads. In VRF-RSA, let the size of
the modulus N be 1024 bits (Considering that the current con-
sensus time of Bitcoin is about 10 minutes, such a short period
of time is sufficient for VRF to resist adversarial attacks). Cor-
respondingly, the proof � needs to be 128-byte integer. Fig-
ure 6 illustrates the block header fields and their sizes in the
PoW-based and VRF-based protocols, respectively.

Specifically, as shown in Fig. 6, the nNonce field is used
to store the scriptProof that contains 128-byte � and 6-byte
opcodes in the VRF-based protocol. The scriptHash con-
sists of 32-byte y and 3-byte opcodes, which is stored in the
hashPreBlock filed. In addition, the other fields in the block
header remain unchanged. So, the block header size in the
VRF-based protocol is larger than that in the PoW. However,

comparing with the block size (870K bytes), the 133-byte
increase of the block header is very small, which will lightly
affect the number of transactions in the block.

Another two VRF constructions, VRF-DDH and VRF-
LHL, will bring more efficient storage overheads. For exam-
ple, under 128-bit security strength, the proof � in ℤq only
needs to be 32-byte integer. So, the scriptProof in VRF-
DDH contains 64-byte � and 6-byte opcodes, i.e., it requires
70-byte storage overhead. Moreover, the scriptProof in VRF-
LHL contains 32-byte � and 6-byte opcodes, so, its storage
overhead can be further reduced to 38 bytes.

The PoW-based protocol requires high computing power
and energy consumption. Taking Bitcoin as an example,
the Bitcoin’s computing power has touched a new high of
around 140 exahashes3 per second (EH/s). Meanwhile, the
Cambridge Bitcoin Electricity Consumption Index (CBECI)
shows that the estimated power to run Bitcoin has reached
10.97 gigawatts (GW) a day. However, the VRF-based pro-
tocol only needs to perform VRF operation once, which
avoids the repeated calculations of the double SHA-256 for
the block header in the PoW. Therefore, the VRF-based pro-
tocol can greatly reduce the computational overheads and
save the energy consumption.

Table 3 The stack state during the execution of the block verification script

Step Stack Script Description

1 Empty ⟨�⟩ OP_DUP OP_RSA_PK OP_EXP_MOD OP_
DUP OP_VRF_INPUT OP_EQUALVERIFY
OP_XOR OP_HASH256 ⟨y⟩ OP_EQUAL

scriptProof and scriptHash are combined.

2 ⟨�⟩ OP_DUP OP_RSA_PK OP_EXP_MOD OP_DUP
OP_VRF_INPUT OP_EQUALVERIFY OP_
XOR OP_HASH256 ⟨y⟩ OP_EQUAL

⟨�⟩ is added to the stack.

3 ⟨�⟩ ⟨�⟩ OP_RSA_PK OP_EXP_MOD OP_DUP OP_
VRF_INPUT OP_EQUALVERIFY OP_XOR
OP_HASH256 ⟨y⟩ OP_EQUAL

Top stack item is duplicated.

4 ⟨�⟩ ⟨�⟩ ⟨e⟩ ⟨N⟩ OP_EXP_MOD OP_DUP OP_VRF_INPUT
OP_EQUALVERIFY OP_XOR OP_HASH256
⟨y⟩ OP_EQUAL

⟨e⟩ and ⟨N⟩ are added to the stack.

5 ⟨�⟩ ⟨�e mod N⟩ OP_DUP OP_VRF_INPUT OP_EQUALVERIFY
OP_XOR OP_HASH256 ⟨y⟩ OP_EQUAL

⟨�e mod N⟩ is added to the stack.

6 ⟨�⟩ ⟨�e mod N⟩ ⟨�e mod N⟩ OP_VRF_INPUT OP_EQUALVERIFY OP_XOR
OP_HASH256 ⟨y⟩ OP_EQUAL

Top stack item is duplicated.

7 ⟨�⟩ ⟨�e mod N⟩ ⟨�e mod N⟩ ⟨x⟩ OP_EQUALVERIFY OP_XOR OP_HASH256 ⟨y⟩
OP_EQUAL

The VRF’s input ⟨x⟩ is added to the stack.

8 ⟨�⟩ ⟨�e mod N⟩ OP_XOR OP_HASH256 ⟨y⟩ OP_EQUAL The script execution proceeds if the top two stack
items are equal.

9 ⟨𝜋 ⊕ 𝜋e mod N⟩ OP_HASH256 ⟨y⟩ OP_EQUAL Boolean XOR of the top two items is calculated.
10 ⟨Hash(𝜋 ⊕ 𝜋e mod N)⟩ ⟨y⟩ OP_EQUAL Top stack item is hashed.
11 ⟨Hash(𝜋 ⊕ 𝜋e mod N)⟩ ⟨y⟩ OP_EQUAL ⟨y⟩ is added to the stack.
12 True/false Empty Equality is checked between the top two stack items.

3 one exahash is one quintillion hashes, i.e., 1 EH = 1018 hashes.

 Peer-to-Peer Networking and Applications

1 3

In addition, the VRF’s output y that is stored in the hash-
PreBlock field can maintain the chain structure of block-
chain. Considering the sk = {d,N} of each node is unique,
� that is obtained from � ≡ xd mod N should also be dif-
ferent. So, the probability that the outputs y of two distinct

blocks will be same is extremely negligible since the col-
lision resistance property of cryptographic hash function.
In other words, y can be securely considered as a unique
identifier of the block.

The unchanged hashMerkleRoot field stores the root hash
of Merkle tree that is formed by transactions in blockchain.
Once a transaction in the block is maliciously forged or
tampered with, the root hash will be changed dramatically.
Therefore, the hashMerkleRoot field is associated with trans-
actions in the block to ensure their integrity.

5.4 Experimental evaluation

We conduct experiments to evaluate the efficiency of the
proposed VRF schemes by using Wolfram Mathematica
9.0.1.0 software. All the programs are executed on a Win-
dows 10 (64-bit) PC with Intel(R) Core(TM) i5-4590S CPU

(a) (b)

Fig. 6 The block header fields and their sizes in the PoW-based and
VRF-based protocols, respectively

Fig. 7 Computing time of Prove and Verify, and the size of modulus N under different security strengths

Peer-to-Peer Networking and Applications

1 3

@ 3.00GHz processor and 4G DDR3-RAM. Let hash func-
tion be SHA-256 cryptographic algorithm and the value of
public exponent e be 65537. Firstly, we test the computa-
tional overhead of VRF-RSA under the different security
strengths n, which is from 80 to 260. Figure 7 shows com-
puting time of Prove and Verify algorithms in VRF, and the
size of modulus N under five common security strengths n
in logarithmic coordinates. Obviously, the larger the size of
N, the higher the computational overheads of the two algo-
rithms. In addition, the computing time of Verify is much
shorter than that of Prove, which can greatly reduce the
block verification cost of the verifiers.

In order to show the uptrend of curves more clearly,
the general numerical ordinate is used to represent the
computing time. As shown in Fig. 8, we demonstrate the
relationship between the computing time of Prove / Verify
and the security strength n. Obviously, the computing time

of the two algorithms is an approximate quadratic func-
tion of n. When the security strength reaches 256 bits,
the computing time of Prove and Verify is less than 1
second and 0.0035 seconds, respectively. Therefore, the
computational overheads of VRF-RSA can be reduced to
the millisecond level.

Next, we compare the computational overheads of our
three VRF schemes under 128-bit security strength. The
experimental computation overheads of Prove and Verify
in our schemes are listed in Table 4. Obviously, Prove and
Verify need only to perform a few exponential and hash
operations, and their computational overheads can reach the
millisecond level. For example, the Prove in VRF-DDH only
needs to perform one 256-bit exponential operation in � and
two SHA-256 operations, its time complexity and compu-
tational overhead are [Ep] + 2[H] and 0.00230161 seconds,
respectively.

Fig. 8 The relationship between the computing time of Prove / Verify and the security strength n

 Peer-to-Peer Networking and Applications

1 3

In VRF-RSA, it is easy to see that Prove and Verify have
the same time complexity. However, the computational over-
head of Verify is much smaller than that of Prove since the
bit length of the selected e (17 bits) is far less than that of the
private exponent d. Moreover, considering that only one SHA-
256 operation needs to be performed in VRF-LHL, the time
complexity of Prove is [H] and the computational overhead
can be reduced to the microsecond level. However, Verify
needs to perform one 3072-bit exponential operation in � ,
so its computational overhead reaches 0.02947671 seconds.
Therefore, three proposed VRF schemes have low computa-
tional overheads in practical applications and can meet the
efficiency requirements of consensus protocols in blockchain.

5.5 Performance comparisons

Since Algorand was proposed in [9], VRF attracts wide
attention in bockchain. Actually, Algorand did not give a
specific VRF scheme, but used the existing scheme (called
GNPR-VRF) proposed by Goldberg et al. [35]. We also
compare their scheme with our VRF-LHL sche-me from
two aspects of performance and security. Firstly, GNPR-
VRF is implemented over Curve25519 [36] and the curve
equation can be expressed as y2 = x3 + 486662x2 + x . In
this setting, GNPR-VRF was proven to reach approxi-
mately 128-bit security on random oracle model under
the DDH assumption. Referring to Sect. 4, VRF-LHL also
achieves 128-bit or higher security based on LHL lemma.

We firstly compare the storage overheads of these two
schemes. GNPR-VRF uses the above elliptic curve over �q ,
where q is a 256-bit prime. Any point (x, y) on the curve is
represented by 512 bits, where x, y ∈ �q . However, VRF-LHL
operates in finite field �p of prime order p, which is required
to be a 3072-bit integer. Thus, the size of the GNPR-VRF’s
output y is 32 bytes, which is lower than that of VRF-LHL
(384 bytes). However, the proof � in VRF-LHL needs only
32-byte storage overhead, which is lower than that in GNPR-
VRF (80 bytes). Therefore, our VRF-LHL scheme has lower
storage overhead for �.

We next evaluate the computation time of Prove and Ver-
ify algorithms. Firstly, compared with VRF-LHL, the Verify
in GNPR-VRF needs more (three hash and four exponent)
operations. On the other hand, the Verify in GNPR-VRF is
more efficient than that of VRF-LHL as a result that GNPR-
VRF operates in �q of 256-bit q. Moreover, the Prove in
GNPR-VRF involves three hash operations and three expo-
nential operations in �q , but VRF-LHL only requires one
hash operation. So the Prove in VRF-LHL has lower com-
putational overheads than that in GNPR-VRF.

Finally, GNPR-VRF used in Algorand is based on elliptic-
curve cryptography (ECC). It employs so special curve that
is completely different from the curves used in cryptography
textbooks. Although the advantage of the scheme on ECC is
small storage space, developers need to have a good math-
ematical background on elliptic curve and abstract algebra.
In contrast to it, our VRF-LHL scheme is entirely based on
finite-field cryptography, which has relatively low develop-
ment difficulty in practical applications.

6 Conclusion

In this paper, we propose three simple and efficient VRF
constructions which are practically applicable to the consen-
sus protocol design of blockchain. We also provide full secu-
rity analysis of our constructions. Furthermore, we show
a specific application of our constructions in the famous
Algorand consensus protocol, and analyze the performance
of our constructions in VRF-based consensus protocol
design in terms of storage and computation overheads. The
performance analysis and experimental evaluation illustrate
that the designed protocol based on our VRF constructions
can effectively reduce the computational resources of PoW-
based protocols and improve consensus efficiency.

Acknowledgements This work was supported by the National Key
Technologies R&D Programs of China (2018YFB1402702) and the
National Natural Science Foundation of China (61972032).

References

 1. Zheng Z, Xie S, Dai H, Chen X, Wang H (2017) An overview
of blockchain technology: Architecture, consensus, and future
trends. In 2017 IEEE International Congress on Big Data, Big-
Data Congress 2017, Honolulu, HI, USA. IEEE Computer Society
pp 557–564

 2. Li Y, Shi W, Kumar M, Chen J (2018) Dycrem: Dynamic credit
risk management using edge-based blockchain. In 2018 IEEE/
ACM Symposium on Edge Computing, SEC 2018, Seattle, WA,
USA. IEEE pp 344–346

 3. Wu Y, Lu Z, Yu F, Luo X (2019) Rapid consortium blockchain for
digital right management. In Genetic and Evolutionary Computing -
Proceedings of the Thirteenth International Conference on
Genetic and Evolutionary Computing, ICGEC. Qingdao, China,
vol. 1107 of Advances in Intelligent Systems and Computing,
Springer pp 447–454

Table 4 The experimental computation overheads of Prove and Verify
in three VRF schemes

VRF Scheme Algorithm Time Complexity Computational
Overhead (second)

VRF-RSA Prove [EN] + [H] 0.01771249
Verify [EN] + [H] 0.00153443

VRF-DDH Prove [Ep] + 2[H] 0.00230161
Verify 2[Ep] + 2[H] 0.00280243

VRF-LHL Prove [H] 0.00006672
Verify 3[Ep] + [H] 0.02947671

Peer-to-Peer Networking and Applications

1 3

 4. Jabbar R, Fetais N, Krichen M, Barkaoui K (2020) Blockchain
technology for healthcare: Enhancing shared electronic health
record interoperability and integrity. In IEEE International Con-
ference on Informatics, IoT, and Enabling Technologies, ICIoT
2020, Doha, Qatar. IEEE pp 310–317

 5. Cho EM, Perera MNS (2020) Efficient certificate management in
blockchain based internet of vehicles. In 20th IEEE/ACM Inter-
national Symposium on Cluster, Cloud and Internet Computing,
CCGRID 2020, Melbourne, Australia. IEEE pp 794–797

 6. Nakamoto S (2019) Bitcoin: A peer-to-peer electronic cash sys-
tem. Tech. rep, Manubot

 7. Pass R, Seeman L, Shelat A (2017) Analysis of the blockchain
protocol in asynchronous networks. In Advances in Cryptology
- EUROCRYPT 2017 - 36th Annual International Conference on
the Theory and Applications of Cryptographic Techniques, Paris,
France. Proceedings, Part II (2017), vol. 10211 of Lecture Notes
in Computer Science pp 643–673

 8. Hazari SS, Mahmoud QH (2020) Improving transaction speed
and scalability of blockchain systems via parallel proof of work.
Future Internet 12(8):125

 9. Gilad Y, Hemo R, Micali S, Vlachos G, Zeldovich N (2017)
Algorand: Scaling byzantine agreements for cryptocurrencies.
In Proceedings of the 26th Symposium on Operating Systems
Principles, Shanghai, China. ACM pp 51–68

 10. Micali S, Rabin MO, Vadhan SP (1999) Verifiable random functions.
In 40th Annual Symposium on Foundations of Computer Science,
FOCS ’99. New York, NY, USA, IEEE Computer Society pp 120–130

 11. David B, Gazi P, Kiayias A, Russell A (2018) Ouroboros praos:
An adaptively-secure, semi-synchronous proof-of-stake block-
chain. In Advances in Cryptology - EUROCRYPT 2018 - 37th
Annual International Conference on the Theory and Applications
of Cryptographic Techniques, Tel Aviv, Israel. Proceedings, Part
II vol. 10821. Springer pp 66–98

 12. Hanke T, Movahedi M, Williams D (2018) DFINITY technology
overview series, consensus system. CoRR abs/1805.04548

 13. Goldreich O, Levin LA (1989) A hard-core predicate for all one-
way functions. In Proceedings of the 21st Annual ACM Sympo-
sium on Theory of Computing, May 14-17, 1989, Seattle, Washig-
ton, USA, D. S. Johnson, Ed., ACM pp 25–32

 14. Dodis Y, Yampolskiy A (2005) A verifiable random function with
short proofs and keys. In Public Key Cryptography - PKC 2005,
8th International Workshop on Theory and Practice in Public
Key Cryptography, Les Diablerets, Switzerland. Proceedings.
Springer 3386:416–431

 15. Hohenberger S, Waters B (2010) Constructing verifiable random
functions with large input spaces. In Advances in Cryptology -
EUROCRYPT 2010, 29th Annual International Conference on the
Theory and Applications of Cryptographic Techniques, Monaco /
French Riviera Proceedings. Springer 6110:656–672

 16. Hofheinz D, Jager T (2016) Verifiable random functions from
standard assumptions. In Theory of Cryptography - 13th Interna-
tional Conference, TCC 2016-A, Tel Aviv, Israel. Proceedings,
Part I. Springer 9562:336–362

 17. Kohl L (2019) Hunting and gathering - verifiable random func-
tions from standard assumptions with short proofs. In Public-Key
Cryptography - PKC 2019 - 22nd IACR International Confer-
ence on Practice and Theory of Public-Key Cryptography, Beijing,
China. Proceedings, Part II. Springer 11443:408–437

 18. Bitansky N (2017) Verifiable random functions from non-interactive
witness-indistinguishable proofs. In Theory of Cryptography - 15th
International Conference, TCC 2017, Baltimore, MD, USA. Pro-
ceedings, Part II. Springer 10678:567–594

 19. Brakerski Z, Goldwasser S, Rothblum GN, Vaikuntanathan V
(2009) Weak verifiable random functions. In Theory of Cryptog-
raphy, 6th Theory of Cryptography Conference, TCC 2009, San
Francisco, CA, USA. Proceedings. Springer 5444:558–576

 20. Fuchsbauer G (2014) Constrained verifiable random functions. In
Security and Cryptography for Networks - 9th International Confer-
ence, SCN 2014, Amalfi, Italy. Proceedings. Springer 8642:95–114

 21. Wang Q, Feng R, Zhu Y (2018) Verifiable random func-
tions with boolean function constraints. Sci China Inf Sci
61(3):039105:1–039105:3

 22. Liang B, Banegas G, Mitrokotsa A (2020) Statically aggregate verifi-
able random functions and application to e-lottery. Cryptogr 4(4):37

 23. Goyal R, Hohenberger S, Koppula V, Waters B (2017) A generic
approach to constructing and proving verifiable random func-
tions. In Theory of Cryptography - 15th International Confer-
ence, TCC 2017, Baltimore, MD, USA. Proceedings, Part
II. Springer 10678:537–566

 24. Brunetta C, Liang B, Mitrokotsa A (2018) Lattice-based simulat-
able vrfs: Challenges and future directions. J Internet Serv Inf
Secur 8(4):57–69

 25. Abraham E (2018) Post-quantum verifiable random functions from
ring signatures. IACR Cryptol ePrint Arch 2018:1231

 26. Jager T, Niehues D (2019) On the real-world instantiability of
admissible hash functions and efficient verifiable random func-
tions. In Selected Areas in Cryptography - SAC 2019 - 26th Inter-
national Conference, Waterloo, ON, Canada. Revised Selected
Papers. Springer 11959:303–332

 27. Jager T (2015) Verifiable random functions from weaker assump-
tions. In Theory of Cryptography - 12th Theory of Cryptography
Conference, TCC 2015, Warsaw, Poland. Proceedings Part II.
Springer 9015:121–143

 28. Yamada S (2017) Asymptotically compact adaptively secure lat-
tice ibes and verifiable random functions via generalized partition-
ing techniques. In Advances in Cryptology - CRYPTO 2017 - 37th
Annual International Cryptology Conference, Santa Barbara, CA,
USA. Proceedings, Part III. Springer 10403:161–193

 29. Boneh D, Lynn B, Shacham H (2001) Short signatures from the
weil pairing. In Advances in Cryptology - ASIACRYPT 2001,
7th International Conference on the Theory and Application of
Cryptology and Information Security, Gold Coast, Australia. Pro-
ceedings. Springer 2248:514–532

 30. Chen T, Huang W, Kuo P, Chung H, Chao T (2018) DEXON:
A highly scalable, decentralized dag-based consensus algorithm.
IACR Cryptol ePrint Arc 2018:1112

 31. Brotsis S, Kolokotronis N, Limniotis K, Shiaeles S (2020) On
the security of permissioned blockchain solutions for iot applica-
tions. In 2020 6th IEEE Conference on Network Softwarization
(NetSoft). IEEE pp 465–472

 32. Barak B, Dodis Y, Krawczyk H, Pereira O, Pietrzak K, Standaert
F, Yu Y (2011) Leftover hash lemma, revisited. In Advances in
Cryptology - CRYPTO 2011 - 31st Annual Cryptology Confer-
ence, Santa Barbara, CA, USA. Proceedings. Springer 6841:1–20

 33. Goldberg S, Vcelak J, Papadopoulos D, Reyzin L (2018) Verifi-
able random functions (vrfs)

 34. Dobraunig C, Eichlseder M, Mendel F (2015) Analysis of SHA-
512/224 and SHA-512/256. In Advances in Cryptology - ASIA-
CRYPT 2015 - 21st International Conference on the Theory and
Application of Cryptology and Information Security, Auckland,
New Zealand. Proceedings, Part II of Lecture Notes in Computer
Science. Springer 9453:612–630

 35. Goldberg S, Naor M, Papadopoulos D, Reyzin L (2016) Nsec5
from elliptic curves: Provably preventing dnssec zone enumera-
tion with shorter responses. IACR Cryptol. ePrint Arch. 2016:83

 36. Bernstein DJ (2006) Curve25519: new diffie-hellman speed
records. In International Workshop on Public Key Cryptogra-
phy. Springer pp 207–228

Publisher’s Note Springer Nature remains neutral with regard to
jurisdictional claims in published maps and institutional affiliations.

 Peer-to-Peer Networking and Applications

1 3

Guanglai Guo is currently a Ph.D.
candidate in the school of Computer
and Communication Engineering,
University of Science and Technol-
ogy (USTB), Beijing, China. He
received the M.S. degree in control
theory from USTB, China, in 2017.
His research interests include cryp-
tography and secure multi-party
computation.

Yan Zhu is currently a professor
in the school of computer and
communication engineering at
the University of Science and
Technology Beijing (USTB),
China. He was an associate pro-
fessor at Peking University
(PKU) in China from 2007 to
2012. He was a visiting associ-
ate professor in the Arizona
State University (ASU) from
2008 to 2009, and a visiting
research investigator of the
University of Michigan-Dear-

born in 2012. His research interests include cryptography, secure
group computation, secure multi-party computation, and network
security. He is a member of the IEEE.

E Chen received the B.S. degree
from the department of School of
Mathematics and Physics, Uni-
versity of Science and Technol-
ogy Beijing, China. She is cur-
rently a Ph.D. candidate with the
department of School of Com-
puter and Communication Engi-
neering, University of Science
and Technology Beijing, China.
Her research interests include
attribute based system and lattice
cryptography.

Di Ma received the Ph.D. degree in
computer science from the Univer-
sity of California, Irvine, CA, USA,
in 2009. She is currently an Associ-
ate Professor of Computer Science
with the Computer and Information
Science Department, College of
Engineering and Computer Science
(CECS), University of Michigan-
Dearborn, Dearborn, MI, USA. She
is also the Interim Associate Dean
for Graduate Education and
Research and the Director of the

Cybersecurity Center for Education, Research, and Outreach, CECS. Her
research is supported by the National Science Foundation, the National
Highway Traffic Safety Administration, the Air Force Office of Scientific
Research, Intel, Ford, and Research in Motion. She was with IBM
Almaden Research Center in 2008 and the Institute for Infocomm
Research, Singapore, from 2000 to 2005. She is broadly interested in the
general area of security, privacy, and applied cryptography. Her research
interests span a wide range of topics, including connected and autonomous
vehicle security, smartphone and mobile device security, radio frequency
identification and sensor security, and data privacy. Dr. Ma was the recipi-
ent of the Tan Kah Kee Young Inventor Award in 2004, the Distinguished
Research Award from the College of Engineering and Computer Science
of the University of Michigan-Dearborn in 2017, and the 2018 Trevor O.
Jones Outstanding Paper Award from SAE International.

William Cheng‑Chung Chu
received the M.S. and Ph.D.
degrees in computer science from
Northwestern University, Evanston,
IL, USA, in 1987 and 1989, respec-
tively. He is currently a Distin-
guished Professor with the Depart-
ment of Computer Science,
Tunghai University, Taichung,
Taiwan, where he had served as the
Director of Software Engineering
and Technologies Center from
2004 to 2016 and as the Dean of
Research and Development office
from 2004 to 2007. From 1994 to
1998, he was the Dean of Engineer-

ing College and an Associate Professor with the Department of Informa-
tion Engineering and Computer Science, Feng Chia University. He was a
Research Scientist with the Software Technology Center, Lockheed Mis-
siles and Space Company, Inc. In 1992, he was also a Visiting Scholar with
Stanford University. He has edited several books and authored or coau-
thored more than 100 referred papers and book chapters, as well as partici-
pated in many international activities, including organizing international
conferences, serving as the steering committee for the IEEE Computer
Society Signature Conference on Computers, Software and Applications,
the Asia-Pacific Software Engineering Conference, the IEEE International
Conference on Software Quality, Reliability and Security, the International
Symposium on System and Software Reliability, and the program com-
mittee of more than 70 international conferences. His current research
interests include software engineering artificial intelligence and big data
analytics. Prof. Chu was the recipient of special contribution awards in
both 1992 and 1993 and a PIP Award in 1993 at Lockheed Missiles and
Space Company, Inc. He is an Associate Editor for the IEEE TRANSAC-
TIONS ON RELIABILITY, the Journal of Software Maintenance and
Evolution, the International Journal of Advancements in Computing Tech-
nology, and the Journal of Systems and Software.

Guizhen Zhu graduated from Insti-
tute for Advanced Study, Tsinghua
University with a Ph.D. degree in
2013. She was a visit scholar at
department of Mathematics, Univer-
sity for California, Irvine from 2010
to 2011. She is currently a senior
engineer at Data and Communica-
tion Science Technology Research
Institute. Her main research area
includes post-quantum cryptogra-
phy, especially lattice-based cryp-
tography, homomorphic encryption
and its applications.

	Continuous improvement of script-driven verifiable random functions for reducing computing power in blockchain consensus protocols
	Abstract
	1 Introduction
	1.1 Motivation
	1.2 Related work
	1.3 VRF-based consensus protocols
	1.4 Our contribution
	1.5 Organization

	2 Preliminaries
	2.1 Verifiable random function
	2.2 Hardness problems and complexity assumptions
	2.3 Universal hashing and leftover hash lemma

	3 Constructions of verifiable random function
	3.1 VRF construction over RSA
	3.2 VRF construction over DDH
	3.3 VRF construction over LHL

	4 Comparisons
	5 Application of VRFs in blockchain
	5.1 VRF-based consensus protocols
	5.2 Improvement of scripting system
	5.3 Performance analysis
	5.4 Experimental evaluation
	5.5 Performance comparisons

	6 Conclusion
	Acknowledgements
	References

