
2327-4662 (c) 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/JIOT.2021.3124016, IEEE Internet of
Things Journal

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, OCTOBER 2021 1

Attribute-based Private Data Sharing with Script-driven
Programmable Ciphertext and Decentralized Key Management

in Blockchain Internet of Things
Hongjian Yin, E Chen, Yan Zhu, Member, IEEE, Chengwei Zhao, Rongquan Feng, Stephen S. Yau, Fellow, IEEE

Abstract—In this paper, we address the problem of secure
sensitive data sharing for the specified recipients in Blockchain
Internet of Things (BIoT). To do it, we present a cryptographic
solution to meet the requirements of decentralization and conve-
nience through key management and programmable ciphertext.
Firstly, we design a new Ciphertext-Policy Decentralized-Key
Attribute-based Encryption (CP-DK-ABE) scheme. After the
master secret key is shared into all full nodes in the form of
threshold secret sharing, a decentralized multi-party computation
protocol is used to generate the user’s private key in an interactive
way. Meanwhile, the attribute sub-keys associated with the
private key can be reconstructed by obtaining fragment from
each of full nodes, so as to achieve the cooperative management
of attribute key through all of full nodes. Furthermore, following
the blockchain’s script system, we introduce five new opcodes
to represent ciphertext in the programmable format. Such a
mechanism provides flexible capability to represent the logical
relationship of access control policy among attribute sub-ciphers
in the CP-DK-ABE ciphertext by the scripting language. As a
result, the processes of encryption and decryption are implement-
ed entirely by the script interpreter on the blockchain node,
thereby greatly improving the convenience of programming in
BIoT devices. In addition, we prove that the proposed CP-DK-
ABE scheme is key private and semantically secure for a limited
number of corrupted full nodes under the decisional linear and
bilinear Diffie-Hellman assumption, respectively.

Index Terms—Blockchain IoT, ABE, decentralized key, script
system, programmable ciphertext.

I. INTRODUCTION

AS an exciting technology, Blockchain Internet of Things,
known as BIoT, has attracted much attention since it was

proposed and has been widely implemented across industries,
such as medical, vehicle, agriculture, etc.. Benefiting from the
decentralized blockchain network, BIoT has a lower operating
cost and decentralized resource management in comparison
with the traditional IoT. As a combination of two popular
technologies, BIoT has not only broad application prospects,
but also great commercial value [1]. According to Aftrex

H. Yin, E Chen and Y. Zhu are with the School of Computer and
Communication Engineering, University of Science and Technology Beijing,
Beijing, 100083 China (e-mail: honjanyin@163.com; chene5546@163.com;
zhuyan@ustb.edu.cn).

C. Zhao is with the Chinese Academy of Science and Technology for De-
velopment (CASTED), Beijing, 100038 China (email: zhaocw@bupt.edu.cn).

R. Feng is with the School of Mathematical Science, Peking University,
Beijing, 100871 China (e-mail: fengrq@math.pku.edu.cn).

Stephen S. Yau is with the School of Computing and Augmented
Intelligence, Arizona State University, Tempe, 85287-8809 USA (email:
yau@asu.edu).

Manuscript received month day, 2021; revised month day, 2021; accepted
month day, 2021. (Corresponding author: Yan Zhu)

market report 20181, the global BIoT market is estimated to
reach USD 254.31 billion by 2026.

The large-scale application of BIoT technology has caused a
series of security threats. In particular, IoT network is replaced
by a distributed broadcast network through blockchain, which
will increase the risk of eavesdropping, denial of service and
botnet attacks. Among these security threats, the most serious
one is data privacy leakage. Considering that 98% of all IoT
device traffic is unencrypted according to the Palo Alto IoT
Threat Report in 20202, these data exposed on the network
is easy to be monitored and collected by attackers, and then
exploited for profit on the Dark Web. Some works have studied
on user authentication [2] and privacy protection [3] in IoT,
but it is necessary to pay special attention to secure sensitive
data sharing. Therefore, our main focus is the protection of
BIoT data privacy in this work.

A. Motivations

Although digital signature and Hash function in blockchain
can protect the BIoT data from being tampered, most of the
existing blockchain systems have not adopted encryption tech-
nique. The reason is that the existing encryption algorithms
(such as RSA, ECC) are built on “one-to-one” cryptosystem
over PKI system, that is, one user’s public key corresponds to
one unique private key. It means that a ciphertext generated
by the recipient’s public key can only be decrypted by the
private key of the designated recipient. Under this encryption
mechanism, in order to share BIoT data among multiple users,
the data needs to be encrypted and transmitted repeatedly.
The number of encryptions and transmissions will be as large
as that of target users. Obviously, this “one-to-one” unicast
mode is not only inefficient, also contrary to the blockchain
broadcast network.

In view of the broadcast network of BIoT, group-oriented
encryption is a more effective solution to share the sensitive
data securely. As a “one-to-many” cryptosystem, the advantage
of group-oriented encryption is that the authorized recipients
are no longer a single individual but a specified set. It means
that a ciphertext, generated by group public-key and broad-
casted throughout the whole network, can only be decrypted
by anyone in the authorization set. In addition, new users
belonging to the authorization set can still decrypt the previous
ciphertext without any other operations after obtaining their

1https://www.aftrexmarketresearch.com/report-details.php?id=548
2https://start.paloaltonetworks.com/unit-42-iot-threat-report

2327-4662 (c) 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/JIOT.2021.3124016, IEEE Internet of
Things Journal

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, OCTOBER 2021 2

private key. Therefore, group-oriented encryption is more
suitable for sharing the sensitive data in BIoT.

At present, group-oriented encryption can be roughly
divided into Identity-based Broadcast Encryption (IBBE),
Role-based Encryption (RBE) and Attribute-based Encryption
(ABE). Intuitively, the main difference among these types is
the authorization way in which identity, role, and attribute
are used as the basic unit to describe the authorized users
for IBBE, RBE and ABE, respectively. For example, chief
physicians of cardiology are Alice and Bob in a hospital,
IBBE describes the authorization set as {Alice, Bob}. RBE
uses the role “Chief physicians of Cardiology” to describe the
authorized users. ABE represents the same set by access policy
“department = cardiology” and “level = Chief physician”. In
comparison with identity and role, attribute is a more fine-
grained and flexible unit to describe authorized users [4].
Therefore, we choose ABE to protect sensitive data in BIoT
in this paper.

Taking Ciphertext-Policy ABE (CP-ABE) as an example,
such as schemes in [5]–[7], it allows one to encrypt data under
the policies defined over some attributes of data recipients. For
instance, a health record policy can be defined as

(Hospital = “Rehabilitation Hospital” and Role =
“Clinician”) or Institution = “Insurance company”.

It means that in addition to clinicians in rehabilitation hospital,
the staffs in insurance company allow access to health records.
Compared with IBBE and RBE, the description way of autho-
rization users in CP-ABE is more fine-grained and flexible.
It is suitable for protecting sensitive data in BIoT, which has
more flexible authorization methods.

In general, the CP-ABE system is deployed in a centralized
environment, so that key management and distribution can be
performed by a trusted administrator. In order to adapt for the
decentralized feature of blockchain, the trusted administrator
should be removed and the key management and private
key-generation should be decentralized. Therefore, CP-ABE
scheme needs to meet the following requirements.

1) Decentralized key distribution. The public-key in CP-
ABE is disclosed, but the corresponding master secret
key needs to be decentralized management rather than
the trusted administrator;

2) Distributed key generation. The user’s private key
needs to be generated collaboratively by multiple nodes,
and a central node is not involved in the process of
private key generation;

3) Programmable ciphertext. The form of ciphertext is
not only compact but also programmable. Moreover, the
processes of encryption and decryption are executed in
blockchain node by program codes.

In the previous CP-ABE schemes, there is almost no re-
search on the storage forms of ciphertext. Most of the cipher-
texts are stored in a numeric form that will bring inconvenience
to the decryption operation with complicated access policy. In
the process of ciphertext decryption, for example, a user first
searches all attribute sub-keys corresponding to attribute sub-
ciphers, and then performs logical operations among attributes
until the message is opened. As a consequence, we consider

using programmed ciphertext to replace numeric ciphertext, so
as to simplify the above decryption process. In addition, the
encryption and decryption processes in the existing CP-ABE
schemes are executed by clients. These client-based operations
increase the difficulty of program design in BIoT devices.
Considering that the blockchain nodes has become a module of
BIoT, our work hopes to transfer encryption and decryption
processes into the blockchain nodes, which is called node-
based encryption and decryption.

B. Related Works

In 2005, Sahai and Waters [8] proposed the first ABE
scheme on the basis of identity-based encryption. Since then,
ABE has attracted widespread attention. ABE schemes can be
roughly divided into two categories: Ciphertext-Policy ABE
(CP-ABE) [9] and Key-Policy ABE (KP-ABE) [10]. In the
CP-ABE scheme, user’s private key is bound to attribute and
ciphertext is related to access policy; whereas it is opposite
in the KP-ABE scheme. Subsequently, Li et al. [11] proposed
the first adaptive chosen-ciphertext security ABE with equality
test, which only adds one dummy attribute to access structure.
Similarly, Jiang and Susilo et al. [12] addressed the “key-
delegation abuse” problem in CP-ABE systems. However,
almost all of the above schemes are built on single authority,
that is, the users’ private keys are issued by a trusted center.
This is inconsistent with our requirements of the distributed
management about master key.

In order to relieve the users’ trust on a single authority,
the first Multi-Authority ABE (MA-ABE) was proposed by
Chase in [13], which allows arbitrary polynomial number of
independent authority to manage attributes and issue private
keys for users. After that, Li et al. [14] constructed a MA-CP-
ABE scheme with decryption outsourcing, which largely elim-
inates the user’s decryption overloads. And they designed an
attribute-level user revocation approach with less computation
costs. Belguith et al. [15] presented a policy-hidden MA-ABE
scheme, which not only ensures the security of hidden policies,
but also protects users’ privacy. However, in order to prevent
collusion attacks, almost all of the above MA-ABE schemes
need a trusted central authority to participate in the generation
of user’s private key, which goes against the decentralization
of Blockchain.

In order to remove the trusted central authority, Lewko
and Waters proposed a new MA-ABE named decentralized
ABE (DABE) [16]. In their scheme, each authority manages
a set of attributes and issues attribute secret keys to users
independently. However, each authority needs to collaborate
with other authorities to initialize the system. To improve it,
Li et al. [17] provided a Decentralized MA-CP-ABE scheme.
In this scheme, each of the attribute authorities works inde-
pendently without any interaction with other authorities, but it
only applies to domain management and needs an obfuscated
program with any mediated interaction. Subsequently, Liang
et al. [18] proposed a privacy-preserving DABE scheme with
policy hiding and global identity hiding. This scheme removes
random oracle, but it relies on composite order group, which
leads to low efficiency and security. Additionally, the similar

2327-4662 (c) 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/JIOT.2021.3124016, IEEE Internet of
Things Journal

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, OCTOBER 2021 3

work [19] has been put forward in the recent years. In these
schemes, the central authority is removed, and each authority
independently issues attribute subkeys to users. Although these
schemes can realize the decentralized generation of user’s
private key, it has low fault tolerance. This means that the
whole system may not be able to run if an authority node
is destroyed, because each authority node manages part of
attributes separately.

Recently, some other kinds of ABE schemes have been
proposed to achieve various of functional purposes. For ex-
ample, Li et al. [20] presented a hierarchical ABE against
continuous master key leakage and users’ secret key leakage.
In the same year, based on lattice hard problem, Tian et al.
[21] proposed a MA-ABE scheme with hidden policies, which
can resist quantum computer attacks. Han et al. [22] proposed
a traceable and revocable CP-ABE scheme, which realizes the
partially hidden policy as well as the tracking and revoking
of malicious users. Islam et al. [23] first proposed revocable
ABE with verifiable outsourced decryption, which allows any
number of users to revoke and join without affecting the secret
membership keys of non-revoked users.

C. Our Approaches

However, none of the existing ABE schemes can meet our
requirements: decentralized key management and distributed
key generation. Therefore, it is necessary to design a new ABE
to prevent the sensitive data from leaking in BIoT. In response
to the aforementioned requirements, we will intent to utilize
the following technologies for designing a new ABE scheme:

1) Using the public ledger, the public-key is known by ev-
ery node in the BIoT system. In addition, by utilizing the
secret sharing, the master key will be distributed to each
full node in blockchain for decentralized management
(see Section IV-A);

2) In order to realize the decentralized generation of the
user’s private key, it needs to design a new key gen-
eration algorithm through multi-party interaction and
cooperation (see Section IV-B);

3) Ciphertext is expressed in the scripting language. The
type identifiers and operation codes are introduced into
the ciphertext to make the expression more compact,
facilitate execution of script interpreter, and implement
blockchain’s node decryption (see Section V-C and
V-D).

Considering script mechanism in Bitcoin system can realize
advance operations, such as flow control, bitwise logic, crypto,
etc. [24]–[26], we expect to combine ABE with the Bitcoin
script mechanism for describing ciphertext in the scripting
language. Through programming, this kind of ciphertext is
more compact and efficient.

D. Our Contributions

In this paper, our goal is to design a new attribute-
based encryption scheme to share the sensitive data with the
specified recipients in BIoT. Considering the requirements
of decentralization and convenience, we present a private

data sharing solution through decentralized key generation
and programmable ciphertext. Exactly, our contributions are
summarized as follows:

1) We design a new Ciphertext-Policy Decentralized-Key
ABE (CP-DK-ABE) scheme to support decentralized
key distribution and generation. In this scheme, the
master secret key is distributed into all full nodes
in blockchain by using (t, n)-threshold secret sharing.
Based on it, a decentralized multi-party computation
technique is used to generate the user’s private key in
an interactive way. Meanwhile, the attribute sub-keys
associated with the private key can be reconstructed
by obtaining fragment from each of full nodes, so as
to achieve the cooperative management of attribute key
through all of full nodes.

2) Aim at the requirement of programmable ciphertext,
we introduce five new opcodes and the corresponding
algorithms into Bitcoin’s script system. Such a mecha-
nism provides flexible capability to represent the logical
relationship of access control policy among attribute
sub-ciphers in the CP-DK-ABE ciphertext by the script-
ing language. Furthermore, the processes of encryption
and decryption are implemented entirely by the script
interpreter on the blockchain node. Therefore, this kind
of script-driven programmable ciphertext can greatly im-
prove the convenience of programming in BIoT devices.

In addition, we prove that the proposed CP-DK-ABE scheme
is key private and semantically secure for a limited number of
corrupted full nodes under the decisional linear and bilinear
Diffie-Hellman assumption, respectively.

II. PRELIMINARIES

In this section, we will introduce some preliminaries includ-
ing bilinear mapping and hardness assumptions as below.

A. Bilinear Mapping

Let Φ = (p,G,GT , e(·, ·)) be the bilinear group with prime
order p, where G and GT are cyclic groups of prime order p. g
is the random generator of G. The mapping e : G×G→ GT
is called a bilinear mapping if the following properties are
satisfied:

1) Bilinearity. For all g, h ∈ G, and a, b ∈ Z∗p, e(ga, hb) =
e(g, h)ab holds;

2) Non-degeneracy. e(g, g) 6= 1;
3) Computability. ∀g, h ∈ G, there are efficient algorithms

to compute e(g, h).

B. Hardness Assumptions

Decision Linear Diffie-Hellman assumption. Let {ai},
{ci}, b and Z be random elements in Z∗p, where i ∈
[0, t − 1]. And G is a generator in group G. The Decision
Linear Diffie-Hellman (DLDH) assumption holds in group
G if no probabilistic polynomial-time (PPT) algorithm can
distinguish the tuple [G,Gb, {Gb(ai+ci), G−ci}t−1

i=0, G
ab] from

[G,Gb, {Gb(ai+ci), G−ci}t−1
i=0, Z] with a non-negligible advan-

tage.

2327-4662 (c) 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/JIOT.2021.3124016, IEEE Internet of
Things Journal

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, OCTOBER 2021 4

…

…

1P n
P

Full Nodes

Public Ledger

… …

2B1B 3B

3P

…

2P

Ciphertext Generation

Algorithm (CGA)

Message

Ciphertext script

Tx encapsulation

Transaction

Tx de-encapsulation

Transaction

Ciphertext script

Script interpreter

Wallet with private key

Message

1U 2U

i
B

Fig. 1: The blockchain-based IoT data sharing system

Decisional Bilinear Diffie-Hellman assumption. Let a, b, c
and z be random element in Z∗p, and G be a genera-
tor in G. The Decisional Bilinear Diffie-Hellman (DBD-
H) assumption holds in group G if no PPT algorithm
can distinguish the tuple [G,Ga, Gb, Gc, e(G,G)abc] from
[G,Ga, Gb, Gc, e(G,G)z] with a non-negligible advantage.

III. SYSTEM MODEL

Before describing our Blockchain-based IoT data sharing
system, we first give some abbreviations and notations in
TABLE I, which will be used in this paper.

TABLE I: Some main notations in this paper

Symbol Description

Pi blockchain full node

Att
(k)
i the i-th attribute of user IDk

A the set of attribute

T access tree

x̃ node in access tree

PK the system public key

SKi the secret key of the full node Pi

skk the private key of user IDk

Nx̃ the decryption result of node x̃

a←R A a is the random element picked in set A

As shown in Fig. 1, our BIoT data sharing system is built on
a blockchain, which contains two entities: blockchain network
and public ledger. Next, we will describe the above two entities
in detail.

Blockchain network. In this work, the goal is to propose a
new encryption mechanism to protect sensitive data in BIoT,
and achieve the flexible selection of content recipients through
the control of authorization. To end it, we will propose a new

scheme based on public blockchain or consortium blockchain.
In our scheme, the blockchain contains two types of nodes:
• Full node Pi has strong computing power to manage

keys, but not all full nodes are required to be fully trusted.
Moreover, full nodes store a copy of the blockchain’s
history, and thus guarantee the security and correctness
of transaction data by participating in consensus-based
data verification. Denote P = {Pi}i∈[1,n] as the set of
full nodes, and n is the number of full nodes.

• Light node Uk represents the user whose BIoT device is
connected to full nodes to synchronize with the current
state of the blockchain network. Moreover, the user
Uk owns a wallet to store his private keys and assets.
In particular, a user can be either data owner or data
consumer, that is,

– Data owner, who wants to share data with specified
users secretly;

– Data consumer, who wants to obtain shared data
from the public ledger.

Public ledger. Public ledger, which is composed of a
series of blocks Bi in chronological order, is used to record
transaction (or just “Tx” for short) in blockchain system.
Specifically, in our system, public ledger is denoted as B =
(B1, · · · , Bi, · · ·). Moreover, each block Bi contains a lot of
transactions, i.e. Bi = {Ti,j}j∈[1,m], and each transaction Ti,j
stores transaction content and other parameters (e.g. previous
Tx ID, timestamp, etc.) in form of “key-value” pairs. As
maintained above, the structure of public ledger can be seen
in Fig. 2. Specially, as ciphertext, private data of transaction
can be expressed by using script codes in our public ledger.

A. System Workflow

In our system, taking the blockchain as a medium, user
shares his BIoT sensitive data (e.g. health records) to specified
recipients by the public-key encryption mechanism. The main
difficulty in this work is not the designing of encryption or

2327-4662 (c) 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/JIOT.2021.3124016, IEEE Internet of
Things Journal

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, OCTOBER 2021 5

Script

Interpreter

Wallet

Main:

Attr1:

Attr2:

Wallet

Main:

Attr1:

Attr2:

Transaction

Transaction

Ciphertext script:

 <C.Att1> <Att1>

 OP_DECNODE

Transaction

Transaction

Ciphertext script:

 <C.Att1> <Att1>

 OP_DECNODE

,i mT

,1iT

Script Runtime
Stock

<Att1>

<C.Att1>

OP_DECNODE

<Att1>

<C.Att1>

OP_DECNODE

Script Runtime
Stock

<Att1>

<C.Att1>

OP_DECNODE

iB

jB

Public
Ledger

iB

jB

Public
Ledger

Script Instruction

Script Instruction

OP_DECNODE

 Input

 Output

Script Instruction

Script Instruction

OP_DECNODE

 Input

 Output

kU

kD
()

1

kD
()

2

kD

Fig. 2: The script system

decryption, but the key generation. Because, in the traditional
sense, the user’s private key is generated by a trusted central,
but in the decentralized environment of blockchain, the master
secret key, used to generate the user’s private key, should
be shared among all full nodes. Therefore, the user’s private
key is generated by interacting between user and full nodes.
Besides, for reducing the user’s computing burden, the process
of encryption and decryption is completed at the blockchain
nodes, which is called node encryption and decryption.

According to the discussion above, the workflow of the
BIoT sensitive data sharing system is described as follows.

1) Full node’s key generation. At the beginning of set-
ting up the blockchain system, administrator generates
system public key PK and master secret key MSK.
Then, it distributes the fragments information of MSK
for realizing the co-management of the master key
among full nodes. Subsequently, the administrator will
store PK into the public ledger and exit this system
permanently (see Section IV-A);

2) User’s private key generation. For the user Uk with
attribute set A, his private key skk is generated by
interacting between Uk and all of full nodes Pi. Next,
Uk stores skk into his wallet (see Section IV-B);

3) Sensitive data encryption. The data owner utilizes the
CP-DK-ABE to encrypt the message M under the policy
T and public key PK to generate the ciphertext CTT .
With the help of the script system, CTT can be encoded
as the script codes, and encapsulated into the transaction.
Finally, the data owner submits the transaction into the
public ledger (see Section IV-C);

4) Ciphertext decryption. The k-th consumer Uk first
downloads the corresponding transaction Tx from public
ledger, then extracts the ciphertext script from Tx by
executing the de-encapsulation. As shown in Fig. 2, the
script interpreter supporting decryption opcodes, extracts
the private key of the consumer from wallet to recover
the message through the script running stack. If the
attribute set A satisfies the access policy T , that is,
A � T , then the user Uk can recover the message
M from the ciphertext CTT by running the script
interpreter (see Section IV-D).

B. Script System

Scripting is a simple and lightweight programming language
that can interpret tasks automatically by using stack and
Reverse Polish Notation. Based on the scripting language,
a novel encryption/decryption framework is designed in this
work. Thanks to the above features of scripting language,
in our CP-ABE scheme, user’s encryption and decryption
operations are automatically executed by the blockchain node,
so as to reduce the difficulty of programming in BIoT devices.
Specifically, as shown in Fig. 2, our script system contains the
following entities.

• Transaction. It is an entity which is used to share
sensitive data in BIoT. The private content of transaction
is expressed by the script ciphertext.

• Wallet. It is an entity which stores the user’s private key
and assets in the form of “key-value” pairs.

• Script Running Stack. In an entity, script codes can be
operated according to stack rules. Finally, it returns the
results at the top of the stack.

• Script Instruction. It is an entity which is used to
describe the flow of algorithm corresponding to operation
codes.

• Script Interpreter. It is similar to a “virtual processor”,
which extracts relevant components from Transaction,
Wallet and Script Instruction, and then returns the results
through Script Runtime Stock processing.

C. The Definition of CP-DK-ABE

The ciphertext-policy decentralized-key attribute-based en-
cryption (CP-DK-ABE) scheme is defined under the following
four algorithms. Without loss of generality, in this definition,
there are n full nodes P = {Pi}i∈[1,n]. Next, we will show
the formal definition of CP-DK-ABE scheme.

• Setup algorithm. This algorithm is executed by the
system administrator. After inputting security parameter-
s, the administrator generates system public key PK,
and assigns the private key SKi for each full node
Pi ∈ P . After that, the administrator exits this system
and no longer participates in any other operations. I.e.,
Setup(1λ)→ {PK, {SKi}i∈[1,n]}.

• Key-generation algorithm. Different with two-party key
exchange protocol (such as [27]), this algorithm is used
to generate user’s private key by interacting between all
of nodes in P and the user Uk. It takes the user’s attribute
set A, identity IDk, PK and all SKi as inputs. Then the
results of interaction between all of nodes in P and the
user Uk, i.e. 〈Uk ↔ {Pi (SKi)}i∈[1,n]〉 (IDk,A, PK)→
skk, is treated as the outputs of the key-generation algo-
rithm. I.e., KeyGen(A, IDk, PK, {SKi}i∈[1,n])→ skk.

• Encryption algorithm. The algorithm is run by data
owner. Taking PK, message M and access policy T
as inputs, this algorithm outputs the relevant ciphertext
CTT . I.e., Enc(M, T , PK)→ CTT .

• Decryption algorithm. The data consumer executes this
algorithm and inputs user’s private keys and the ciphertext
CTT . Then, it outputs the message M if and only if the

2327-4662 (c) 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/JIOT.2021.3124016, IEEE Internet of
Things Journal

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, OCTOBER 2021 6

user’s attribute set A satisfies the access policy under the
ciphertext, that is, A � T . I.e., Dec(CTT , skk)→M .

Correctness. For any user IDk with attribute set A
and an access policy T , we can get the private key
skk ← KeyGen(A, IDk, PK, SKi) and ciphertext CTT ←
Encryption(M, T , PK). If user attribute set satisfies the
access policy, i.e. A � T , then the algorithm Dec(CTT , skk)
will returns M , that is,

Pr [Dec(CTT , skk)→M : A � T] = 1. (1)

IV. THE PROPOSED SCHEME

In this section, we improve BSW’s CP-ABE scheme [9]
to construct a new CP-DK-ABE in order to make it more
suitable for BIoT. The CP-DK-ABE also consists of four algo-
rithms, i.e., setup, key-generation, encryption and decryption,
in consistent with common CP-ABE. Specially, compared with
the BSW’s scheme, we redesign setup and key-generation
algorithms for the decentralization setting based on the Secret
Sharing Scheme (SSS) and secure computing, but the encryp-
tion and decryption algorithms remain almost unchanged.

A. Setup Algorithm

This algorithm is executed by the system administrator to
generate public key and private key of full node. After exe-
cuting this algorithm, the administrator will exit this program
permanently. Specially, the setup algorithm inputs security
parameter 1λ and generates the public key PK and the private
key SKi for each full node Pi in P = {Pi}i∈[1,n].

Step 1. The system administrator runs the setup algorithm
to get the master secret key and some other public parameters.
Firstly, administrator executes this algorithm to achieve a
bilinear group Φ with prime order p. Then it randomly picks
the generator g ∈ G and the collision-resistant hash functions
H1 : {0, 1}∗ → G, H2 : {0, 1}∗ → Z∗p. Finally, the
administrator randomly chooses α, β ∈ Z∗p as the master secret
key of this system.

Step 2. This step is the process of public key generation.
The administrator randomly chooses pi ∈ Z∗p for each full
node Pi and computes Y = e(g, g)α, h = gβ , where i ∈ [1, n].
Then it sets the public key PK as

PK =
{

Φ, g,H1, H2, {pi}i∈[1,n], Y, h
}
. (2)

Step 3. In order to decentralize the authority of the
blockchain system, we should avoid all of the master secret
keys being managed by only one node. In this step, the
administrator shares the master key α among all of Pi by
using Shamir’s (t, n)-threshold secret sharing scheme [28]. In
this case, each of nodes can obtain a shared segment of α,
and the master key α can only be recovered if and only if at
least t full nodes cooperate.

For sharing the system master key α, the administrator first
randomly selects a polynomial f(x) = b0 + b1x + · · · +
bt−1x

t−1 (mod p) of degree t − 1, such that α = b0 and
b1, · · · , bt−1 are random elements in a certain finite field. Then
the administrator computes α1 = f(p1), α2 = f(p2), · · · ,

αn = f(pn) and distributes αi to the shareholder Pi secretly.
Finally, the private key of full node Pi is defined as

SKi =
{
g

1
β , f(pi)

}
∈ G× Z∗p. (3)

B. Key-generation Algorithm

With the help of all of SKi from P , the key-generation
algorithm inputs the user’s identity IDk, attribute set A and
PK, outputs the private key skk for user IDk. This algorithm
is described by the interactive process between private key
requester and each blockchain node Pi. As shown in Fig. 3,
this algorithm includes the four following steps.

Step 1. For the user IDk with attribute set A ={
Att

(k)
1 , Att

(k)
2 , · · · , Att(k)

m

}
, he first sends A to Pi and com-

putes H2(IDk) = ϕk. Then the user computes identity’s
parameters gϕk , g

ϕk
β and sends them to Pi.

Step 2. This step is used to describe the generation of full
node’s parameters. Firstly, for each attribute Att(k)

l ∈ A, the
node Pi chooses a random number ri,l ∈ Z∗p. Then Pi picks
a random number θi and shares it among all of Pi by using
Shamir’s (t, n)-threshold secret sharing scheme as follows. Pi
randomly chooses a degree t− 1 polynomial,

hi(x) = θi + ai,1x+ · · ·+ ai,t−1x
t−1 (mod p), (4)

such that ai,1, · · · , ai,t−1 are random elements in a certain
finite field. Finally, Pi computes n shared segments hi(p1),
hi(p2), · · · , hi(pn) and distributes hi(pj) to shareholder Pj
secretly, where j ∈ [1, n]. When the node Pi receives all the
shared segments hj(pi) from Pj , it computes

∑n
j=1 hj(pi)

individually.
Step 3. Each node Pi uses its private key SKi and the

parameters created in Steps 1-2 to compute the fragment
information of user’s private key.

For fragments of the main private key, Pi computes

Dk,i =
(
g

1
β

)f(pi)

·
(
g
ϕk
β

)∑n
j=1 hj(pi) ∈ G. (5)

For attribute Att(k)
l ∈ A, Pi computes fragments of attribute

subkey as D′
(k)
i,l =

(
gϕk
)∑n

j=1 hj(pi)H1

(
Att

(k)
l

)ri,l
∈ G,

D′′
(k)
i,l = gri,l ∈ G.

(6)

Finally, Pi sends Dk,i, D′
(k)
i,l and D′′(k)

i,l to the user IDk.
Step 4. In this step, by using the Lagrange interpolation

formula, users will reconstruct their main private key and
attribute subkey from the received key fragments. We define
the Lagrange coefficient as Li,S(x) =

∏
j∈S,j 6=i

x−pj
pi−pj for

i ∈ Zp and a set S ⊆ {1, 2, · · · , n}.
For the main private key, it reconstructs:

Dk =
∏t
i=1D

Li,S(0)
k,i ∈ G. (7)

For the attribute subkey, the user reconstructs: D′
(k)
l =

∏t
i=1D

′(k)
i,l

Li,S(0)
∈ G,

D′′
(k)
l =

∏t
i=1D

′′(k)
i,l

Li,S(0)
∈ G.

(8)

2327-4662 (c) 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/JIOT.2021.3124016, IEEE Internet of
Things Journal

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, OCTOBER 2021 7

Step 1

Step 4

Step 2

Step 3

Private key requester Blockchain node P1 Blockchain node P2 Blockchain node Pn

...

...

...

...

2 (), k kH ID PKj =

, ,kID PK,PK

{ },{ }kk k l lD Dsk Î=

()

()

,

,

,

(0)

,1

(0)
'() '()

,1

(0)
''() ''()

,1

i s

i s

i s

t L

k ii

Ltk k

l i li

Ltk k

l i li

kD D

D D

D D

=

=

=

=

=

=

Õ

Õ

Õ

,
k

kg g
j

bj

...

{ }2 2, 2[1,| |]
, (),l l

SK r h x
Î 2| |]| |]| |]| |]| |]

(222 { }, [1,| |]
, (),n n l nl

SK r h x
Î | |]| |]| |]| |]| |]

(n| |]| |]| |]| |]| |]
,hn,

{ } { }
[1,][1,| |]2 2, 2, , ()

il il n
SK r h p

ÎÎ
{

| |]| |]| |]| |]| |]
{

| |]| |]| |]| |]| |]
{

| |]| |]| |]| |]| |]
{{

| |]| |]| |]
{{

| |]| |]| |]| |]| |]
{ } { }

[1,][1,| |],, , ()n n l i n nl i
SK r h p

ÎÎ
{

| |]| |]| |]| |]| |] i n{
| |]| |]| |]| |]| |]

{ i n{
| |]| |]| |]

, ,, ,, ,, ,{
| |]| |]| |]| |]| |]

() ()
()

11 1 1

11 1,

1,

()()

,1

()
'()

1, 1

''()

1,

()

n

jk j

n

jj lk

l

h pf p

k

h p rk

l l

rk

l

D g g

D g H Att

D g

j

b b

j

=

=

å
=

å
=

=

() ()
()

21 2 1

21 2,

2,

()()

,2

()
'()

2, 1

''()

2,

()

n

jk j

n

jj lk

l

h pf p

k

h p rk

l l

rk

l

D g g

D g H Att

D g

j

b b

j

=

=

å
=

å
=

=

() ()
()

1 1

1 ,

,

()()

,

()
'()

, 1

''()

,

()

n

j nkn j

n

j nj n lk

n l

h pf p

k n

h p rk

n l l

rk

n l

D g g

D g H Att

D g

j

b b

j

=

=

å
=

å
=

=

{ }1 [1,|1, 1|]
, , ()l l

SK r h x
Î1, 11, 11, 11, 11, 1|]1, 11, 1, (1, 11, 1r h1, 1, (, (1, 11, 11, 1

{ } { }
[1,][1,| |]1 1, 1, , ()

il il n
SK r h p

ÎÎ | |]| |]| |]| |]| |]
{

| |]| |]| |]| |]| |]
{

| |]| |]| |]| |]| |]
,,{{

| |]| |]| |]
,{{

| |]| |]| |]| |]| |]

{ }1 [1,| |]1, 11
, , ()

n

l jjl
SK r h p

Î =å| |]| |]| |]| |]| |]l j| |]| |]| |]| |]1, 1| |]| |]| |]| |]| |]1, 1| |]| |]| |]
,1, 11, 11, 1| |]| |]| |]| |]| |]l jl j1, 11, 11, 11, 11, 11, 1 { }

[2 2, 211,| |]
, , ()

n

l jjl
SK r h p

Î =å|]l j|]
, ,, ,l jl j { }

[1,| |], 1
, , ()

n

n n l j njl
SK r h p

Î =å| |]| |]| |]| |]| |]| |]| |]| |]| |]| |]| |]| |]| |]
, ,, ,

| |]| |]| |]| |]| |]

Fig. 3: The process of user’s private key by our key-generation algorithm

Finally, let D(k)
l = 〈D′(k)

l , D′′
(k)
l 〉 and the user gets his

private key skk as follows,

skk =
{
Dk, {D(k)

l }l∈A
}
∈ G×Gm×2. (9)

C. Encryption Algorithm

This algorithm is used by light nodes to encrypt sensitive
data individually. Specially, our encryption is the same as
Encrypt algorithm in the BSW’s CP-ABE scheme [9]. For
clarity, we only consider the (k, n)-threshold secret sharing in
the case of n = 2, that is, our encryption algorithm will only
focus on the simple logic AND and OR gates for only two
outputs1. Before describing this algorithm, we will introduce
some preliminaries about access tree.

Given an access policy built on Boolean function, its access
structure [9] can be described by a binary tree T . In this tree,
each non-leaf node is a logic AND or OR gate which has two
child nodes, and each leaf node relates to a Boolean predicate
for attribute matching. More details are described in Section
V-C. Moreover, each node, including non-leaf or leaf node, is
associated with a secret value. Let vx̃ denote the secret value
of the node x̃, and vx̃,l, vx̃,r be the secret values of its left and
right child, respectively.

1The AND and OR gates can be implemented by (2, 2)- and (1, 2)-
threshold secret sharing, respectively.

To encrypt a massage M with the access tree T , the
encryption algorithm executes the following steps:

Step 1. At first, the root node in T is assigned to a random
number s ∈ Z∗p as the initial secret value, that is, vroot = s.
Then, the algorithm uses the “from top to down” approach to
share this secret value into all nodes in the tree. This process
adopts the following “AND/OR” secret sharing schemes to
share the value vx̃ of node x̃ into its children, vx̃,l and vx̃.r,
i.e.,

1) Logic AND gate: picks a new random number r ∈ Z∗p,
and sets the left child’s value vx̃,l = r and the right
child’s value vx̃,r = vx̃ − vx̃,l = s− r;

2) Logic OR gate: sets the equivalence of the left and right
children, i.e., vx̃,l = vx̃,r = vx̃ = s.

Finally, each of leaf nodes is assigned a secret value after the
above process stops.

Step 2. This step is used to encrypt the leaf node, called
EncNode(). Let Y be the set of leaf nodes in the access tree
T . For any node x̃ ∈ Y , the algorithm computes the attribute
subcipher as Cx̃ = 〈C ′x̃, C ′′x̃ 〉 ← EncNode(PK, x̃, vx̃), where

C ′x̃ = gvx̃ and C ′′x̃ = H1(att(x̃))vx̃ . (10)

So that, it produces the attribute subcipher {Cx̃}x̃∈Y .
Step 3. For the root node in T and a message M ∈ GT , the

encryption algorithm computes data subciphers C̃ = M · Y s
and C0 = hs by using the initial secret value s. Finally, the

2327-4662 (c) 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/JIOT.2021.3124016, IEEE Internet of
Things Journal

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, OCTOBER 2021 8

TABLE II: Several examples for opcodes in Bitcoin script

Word Opcode Input Output Description

OP DUP 0x76 x x x Duplicates the top stack item.

OP HASH160 0xa9 x hash(x) The input is hashed twice, first with SHA-256 and then with RIPEMD-160.

OP CHECKSIG 0xac sig,pubkey True/False Checks that the input signature is a valid signature using the input public key
for the hash of the current transaction.

OP EQUALVERIFY 0x88 a, b Checks if two top-most items are equal, if not the entire script execution fails.

ciphertext CTT under T is generated as

CTT =
{
C̃, C0, {Cx̃}x̃∈Y

}
∈ GT ×G×G|Y|×2. (11)

D. Decryption Algorithm

Similar to the Decrypt in the BSW’s CP-ABE scheme [9],
our decryption algorithm can be regarded as the reverse of the
above encryption. Specifically, this algorithm can be divided
into three steps: leaf-node matching, logical-node decryption
and data subcipher decryption.

Step 1 (Leaf-node matching). This step is used to decrypt
the leaf node in T , called DecNode(). For the leaf node x̃,
let att(x̃) denote the corresponding attribute and Cx̃ be the
attribute subcipher about x̃. If the attribute att(x̃) is in A, the
attribute subkey D(k)

att(x̃) could be used to decrypt the attribute
subcipher Cx̃ as

Nx̃ = DecNode(Cx̃, D
(x̃)
att(x̃))

=
e(D′

(k)
att(x̃), C

′
x̃)

e(D′′
(k)
att(x̃), C

′′
x̃)

= e(g, g)ϕk·vx̃·Θ ∈ GT , (12)

where Θ =
n∑
i=1

θi mod p. Otherwise, the decryption result is

invalid, i.e., DecNode(Cx̃, D
(k)
att(x̃)) =⊥.

Step 2 (Logical-node decryption). For the logical node
(non-leaf node) x̃ in T , the set of its child node is denoted
as Sx̃. Let DceLogic() be the decryption algorithm of logic
node, which inputs x̃, {Nz̃}z̃∈Sx̃ and the Lagrange coefficient
Li,S′x̃(0), outputs the decryption result Nx̃ of x̃,

Nx̃ = DceLogic(x̃, {Nz̃}z̃∈Sx̃ , Li,S′x̃(0))

=
∏
z̃∈Sx̃

N
Li,S′

x̃
(0)

z̃ = e(g, g)ϕk·vx̃·Θ ∈ GT , (13)

where i is the index of z̃ in Sx̃, S′x̃ is the set of the index.
Finally, if the attribute set A satisfies the access tree
T , we can simply call the DecLogic algorithm to calcu-
late the decryption result of the root node in T . Nroot =
DecLogic(root,Nz̃∈root, Li,S′root(0)) = e(g, g)ϕk·s·Θ.

Step 3 (Data subcipher decryption). Finally, the data
subcipher is decrypted as follows,

C̃ ·Nroot
e(C0, Dk)

=
M · e(g, g)α·s · e(g, g)ϕk·s·Θ

e
(
gβ·s, g(ϕk·Θ+α)/β

)
= M ∈ GT . (14)

V. SCRIPT IMPLEMENTATION

Almost blockchains provide a built-in programming lan-
guage to support multiple capabilities (e.g., payments, ex-
changes) and allow special operations on transaction, such as
various cryptographic algorithms. Especially, Bitcoin’s script-
ing language is one of the most representative blockchain’s
languages. In this section, we will apply this kind of scripting
language to implement our CP-DK-ABE scheme for more
convenient and concise encryption/decryption. Before imple-
menting script-based cryptographic algorithms, we first give
some descriptions of the scripting language.

A. Scripting Language

Bitcoin’s script is a Forth-like, stack-based, reverse-polish
programming language, which is used to describe the ex-
ecution of a certain algorithm in a blockchain transaction.
The scripting language is simple and intentionally not Turing-
complete, but decentralized validation. Its complexity is limit-
ed since the number of executable operations can be predicted.
We call it minimalist program. The requirements and limi-
tations of the minimalist program is a necessary part of the
functional design of the cryptocurrency.

More importantly, the script will be executed by the in-
terpreter in blockchain nodes, rather than user’s device. No
organization can override its executed results, nor can any
organization save the scripting intermediate states during
the execution. Therefore, the script is suitable to implement
encryption and signature mechanism for avoiding bugs and
malicious codes.

Bitcoin script defines a rich set of operational codes (op-
codes) for various advanced operations classified into flow
control, stack, splice, bitwise logic, arithmetic, crypto, lock-
time, etc. These opcodes are represented as a combination
of prefix “OP ” and suffix “operation name”, e.g., OP DUP,
OP HASH160, OP CHECKSIG, OP EQUALVERIFY, as
showed in TABLE II. In this table, we list some Bitcoin
script opcodes with basic description. For a given opcode,
the corresponding operands, enclosed in angle brackets (e.g.,
〈sig〉), will be pushed onto the stack before the opcode in
terms of Reverse Polish Notation (RPN), which ensures that
the script interpreter performs operations defined by opcode
on the items of the stack.

B. New Opcodes

Although Bitcoin scripting system has introduced some
kinds of opcodes (such as opcodes in TABLE II), it still

2327-4662 (c) 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/JIOT.2021.3124016, IEEE Internet of
Things Journal

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, OCTOBER 2021 9

TABLE III: New added opcodes

Word Opcode Input Output Description

OP WQUERY 0xb1 x out Returns the private key corresponding to x from wallet.

OP DEC NODE 0xb2 a, b out Returns the node decryption value.

OP DEC AND 0xb3 a, b out Returns the AND gate node decryption value.

OP DEC OR 0xb4 a, b out Returns the OR gate node decryption value.

OP DECRYPT 0xb5 a, b, c, d out Returns the message M .

needs new instructions to support the implementation of our
scheme. In TABLE III, we define five new opcodes for our
CP-DK-ABE scheme by replacing the reserved opcodes from
OP NOP1 to OP NOP5. The detailed descriptions of these
instructions are presented as follows.

1) OP WQUERY: It is a wallet query operation. A
blockchain wallet is a collection of private keys, but it
may also refer to a special program used to manage these
keys. In our CP-DK-ABE scheme, the wallet stores the pri-
vate key skk =

{
Dk, {D(k)

l }l∈A
}

with attribute set A ={
Att

(k)
1 , Att

(k)
2 , · · · , Att(k)

m

}
for the user IDk. For clarity, the

private key will be represented by Key-Value Pairs (KVPs) in
lookup table, e.g., < Mainkey,Dk >, < Att

(k)
i , D

(k)

Att
(k)
i

>.
Here, we define the identity of Dk as “Mainkey”.

Algorithm 1 Wallet query (OP WQUERY)

Input: the attribute x
Output: the key component out associated with x

1: if x ∈ {Att(k)
1 , Att

(k)
2 , · · · , Att(k)

m } then
2: out← extract the attribute key D(k)

x from wallet
3: else if x is “Mainkey” then
4: out← extract the main private key Dk from wallet
5: else
6: out←⊥
7: end if

We show the program of OP WQUERY in Algorithm 1. By
running it, script interpreter executes this opcode to query a
certain private key from wallet. It takes the attribute x as input
and extracts the corresponding attribute subkey D(k)

x from the
wallet’s KVPs. For example, taking the attribute Att

(k)
i as

input, the interpreter outputs the subkey D(k)

Att
(k)
i

and pushes it
onto the stack. In addition, it outputs an empty symbol ⊥ if
the attribute x cannot be found in the KVPs.

2) OP DEC NODE: This is leaf-node matching operation
in accordance with the Step 1 of Section IV-D. The interpreter
runs this opcode as Algorithm 2. It pops the two most-top
items, Cx̃ and D(k)

x , from the stack, where Cx̃ is the attribute
subcipher and D(k)

x is the attribute subkey. If D(k)
x is not ⊥,

then interpreter outputs the decryption result Nx̃ according to
Equation (12), otherwise it pushes ⊥ onto the stack.

3) OP DEC AND: This is a simplified Lagrange interpola-
tion opcode with two inputs, which is used to decrypt non-leaf
nodes with AND gates. Let x̃ represent a node, Nx̃.left and
Nx̃.right be the decryption results of x̃’s left and right child
nodes, respectively. As shown in Algorithm 3, the interpreter

Algorithm 2 Node decryption (OP DEC NODE)

Input: attribute subcipher Cx̃ = 〈C ′x̃, C ′′x̃ 〉 and the attribute
subkey D(k)

x = 〈D′(k)
x , D′′

(k)
x 〉

Output: the decryption result Nx̃ associated with Cx̃
1: if D(k)

x is not ⊥ then
2: E ← e

(
D′

(k)
att(x̃), C

′
x̃

)
3: F ← e

(
D′′

(k)
att(x̃), C

′′
x̃

)
4: F ′ ← inverse(F)
5: Nx̃ ← E · F ′
6: else
7: Nx̃ ←⊥
8: end if

pops two top-most items, Nx̃.left and Nx̃.right, from the stack
as inputs. If neither of them is ⊥, the interpreter returns the
decryption result of Nx̃, otherwise it pushes ⊥ onto the stack.

Algorithm 3 AND gate decryption (OP DEC AND)

Input: the decryption results Nx̃.left and Nx̃.right of AND-
gate node x̃’s child nodes

Output: decryption result Nx̃ of node x̃
1: if neither Nx̃.left nor Nx̃.right is ⊥ then
2: Nx̃ ← Nx̃.left ·Nx̃.right
3: else
4: Nx̃ ←⊥
5: end if

4) OP DEC OR: This is also a simplified Lagrange inter-
polation opcode with two inputs, and it is used to decrypt
non-leaf nodes with OR gates. As shown in Algorithm 4,
the interpreter pops two top-most items, Nx̃.left and Nx̃.right,
from the stack as inputs. If neither Nx̃.left nor Nx̃.right is ⊥,
the interpreter randomly selects one of them as the decryption
result of x̃; if only one of them is ⊥, the interpreter outputs
the other one as the decryption result of x̃; if both Nx̃.left and
Nx̃.right are ⊥, the interpreter pushes ⊥ onto the stack.

5) OP DECRYPT: This opcode is used to decrypt the
message from data subcipher complying with Equation (14).
The script interpreter runs Algorithm 5 by popping the four
top-most items, i.e., data subcipher C0 and C̃, the main private
key Dk and the decryption result Nroot of root node. If neither
Dk nor Nroot is ⊥, the interpreter returns the decryption result
of data subcipher, otherwise it pushes ⊥ onto stack.

2327-4662 (c) 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/JIOT.2021.3124016, IEEE Internet of
Things Journal

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, OCTOBER 2021 10

Algorithm 4 OR gate decryption (OP DEC OR)

Input: the decryption results Nx̃.left and Nx̃.right of OR-gate
node x̃’s child nodes

Output: decryption result Nx̃ of node x̃
1: if neither Nx̃.left nor Nx̃.right is ⊥ then
2: Nx̃ ←R {Nx̃.left, Nx̃.right}
3: else if one of them is ⊥ then
4: if Nx̃.left is ⊥ then
5: Nx̃ ← Nx̃.right
6: else
7: Nx̃ ← Nx̃.left
8: end if
9: else

10: Nx̃ ←⊥
11: end if

Algorithm 5 Data subcipher decryption (OP DECRYPT)

Input: the data subcipher C0, C̃, the main private key Dk

and the decryption result of root node Nroot
Output: the description result out of data subcipher

1: if neither Dk nor Nroot is ⊥ then
2: E ← C̃ ·Nroot
3: F ← e

(
C0, Dk

)
4: F ′ ← inverse(F)
5: out← E · F ′
6: else
7: out←⊥
8: end if

C. Script-driven Encryption

In this section, we will describe the process of generating
ciphertext script under an access policy tree in terms of our
new opcodes. Since any multi-branches tree can be converted
into a binary tree, without loss of generality, we set the access
tree in our CP-DK-ABE scheme as a binary tree for the
convenience of description.

Taking the following access policy as an example, we first
convert it into the policy tree T in Fig. 4(a).

Policy :: =
(
Att1 ∧Att2

)
∨Att3

=
(
“CS” ∧ “student”

)
∨ “professor”.

In Fig. 4(a), each leaf node denotes an attribute. Let I21 denote
the attribute “CS”, I22 is “student” and I12 is “professor”. I0
is a logic OR gate and I11 is a logic AND gate. It means that
a CS student or a professor can satisfy access policy tree T .

To encrypt a sensitive data under T , encryptor picks a ran-
dom number s and runs the Ciphertext Generation Algorithm
(CGA) (Algorithm 6) to generate ciphertext CTT . In detail,
the CGA inputs a node x̃, a secret value s, public key PK
and out. If x̃ is leaf node, the algorithm computes attribute
subcipher Cx̃ ← 〈C ′x̃, C ′′x̃ 〉 = 〈gs, H1(att(x̃))s〉 and appends(
Cx̃ 〈att(x̃)〉OP WQUERY OP DEC NODE

)
to the out. If

x̃ is a logic node with AND gate, the algorithm chooses a ran-
dom number r and runs CGA(x̃.left, r, out) and CGA(x̃.right,
s − r, out), then appends OP DEC AND to the out; if x̃

I0

I11 I12

I21 I22

C1 C2

C3

I11

I22

C2C1

I21

(a) (b)

Fig. 4: Two examples on access tree

is a logic node with OR gate, it runs CGA(x̃.left, s, out)
and CGA(x̃.right, s, out), and then appends OP DEC OR to
the out. Moreover, if x̃ is the root node, the CGA computes
the data subcipher, C̃ = e(g, g)αs and C0 = gβs, and then
appends

(
C̃ C0 〈Mainkey〉 OP WQUERY OP DECRYPT

)
to the out. Note that, 〈Mainkey〉 is the identity of data
subcipher which is only used to indicate the ciphertext type.

For instance, the ciphertext under the access policy tree T
in Fig. 4(a) can be generated by CGA as follows.

CTT =
{
〈C1〉 〈Att1〉OP WQUERY OP DEC NODE 〈C2〉
〈Att2〉OP WQUERY OP DEC NODE
OP DEC AND 〈C3〉 〈Att3〉OP WQUERY

OP DEC NODE OP DEC OR 〈C̃〉 〈C0〉
〈Mainkey〉OP WQUERY OP DECRYPT

}
.

Algorithm 6 Ciphertext Generation Algorithm (CGA)

Input: node x̃, a secret value s, PK, message M , out
Output: ciphertext script

1: if node x̃ is leaf then
2: Get the attribute Att(x) of the node x̃
3: Cx̃ ← 〈C ′x̃, C ′′x̃ 〉 = 〈gs, H1(att(x̃))s〉
4: out.append

(
Cx̃ 〈Att(x)〉OP WQUERY OP DEC NODE

)
5: else
6: if node.logic is AND gate then
7: Pick up a random number r
8: CGA(x̃.left, r, out)
9: CGA(x̃.right, s− r, out)

10: out.append
(
OP DEC AND

)
11: else
12: CGA(x̃.left, s, out)
13: CGA(x̃.right, s, out)
14: out.append

(
OP DEC OR

)
15: end if
16: if node x̃ is root then
17: C̃ = M · e(g, g)αs, C0 = gβs

18: out.append
(
C̃ C0 〈Mainkey〉 OP WQUERY

OP DECRYPT
)

19: end if
20: end if

As shown in Fig. 5, the relationship among the five new op-
codes in Fig. 4(b) can be roughly described as follows. Firstly,

2327-4662 (c) 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/JIOT.2021.3124016, IEEE Internet of
Things Journal

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, OCTOBER 2021 11

TABLE IV: The execution process about script decryption of attribute subcipher under TI11
Stack Script Description

1 Empty 〈C1〉 〈Att1〉 OP WQUERY OP DEC NODE 〈C2〉 〈Att2〉
OP WQUERY OP DEC NODE OP DEC AND

2 〈C1〉
〈Att1〉 OP WQUERY OP DEC NODE 〈C2〉 〈Att2〉 OP WQUERY
OP DEC NODE OP DEC AND 〈C1〉 added onto the stack.

3 〈C1〉 〈Att1〉
OP WQUERY OP DEC NODE 〈C2〉 〈Att2〉 OP WQUERY
OP DEC NODE OP DEC AND

Attribute 〈Att1〉 added onto the s-
tack.

4 〈C1〉 〈sk1〉
OP DEC NODE 〈C2〉 〈Att2〉 OP WQUERY OP DEC NODE
OP DEC AND Query 〈sk1〉 matched with 〈C1〉.

5
〈
NAtt1

〉
〈C2〉 〈Att2〉 OP WQUERY OP DEC NODE OP DEC AND Decrypt the ciphertext 〈C1〉.

6
〈
NAtt1

〉
〈C2〉 〈Att2〉 OP WQUERY OP DEC NODE OP DEC AND 〈C2〉 added onto the stack.

7
〈
NAtt1

〉
〈C2〉 〈Att2〉 OP WQUERY OP DEC NODE OP DEC AND Attribute 〈Att2〉 added onto the s-

tack.

8
〈
NAtt1

〉
〈C2〉 〈sk2〉 OP DEC NODE OP DEC AND Query 〈sk2〉 matched with 〈C2〉.

9
〈
NAtt1

〉 〈
NAtt2

〉
OP DEC AND Decrypt the ciphertext 〈C2〉.

10
〈
NI11

〉
Empty Decrypt the root node I11.

by utilizing the private key extracted by the OP WQUARY,
the OP DEC NODE algorithm can be executed to decrypt the
leaf node. Then the OP DEC AND and OP DEC OR can
be executed to decrypt logic nodes with AND and OR gate,
respectively. Finally, the decryption results of logic node are
used by the OP DECRYPT algorithm to recover the message
from the ciphertext.

OP_WQUERY OP_WQUERY

OP_DEC_NODE OP_DEC_NODE

OP_DEC_AND / OP_DEC_OR

OP_DECRYPT

Fig. 5: The relationship among opcodes for access tree in Fig.
4(b)

D. Script-driven Decryption

In our construction, sensitive data is encrypted and submit-
ted into the public ledge in the form of scripting code. A
user who wants to open the protected data should run script
interpreter to decrypt the ciphertext script with the help of his
wallet and script instructions. In the following sections, we
will show the process of script decryption in detail.

As shown in Fig. 4(b), we take the subtree TI11 as an
example to describe the process of decryption. The access
policy under TI11 is defined as Policy ::= Att1 ∧ Att2 =(
“CS”

)
∧
(
“student”

)
. According to CGA, we can easily get

the ciphertext under the access tree TI11 . For convenience, we

divide the ciphertext into two parts: attribute subcipher and
data subcipher. The attribute subcipher under TI11 is{
〈C1〉 〈Att1〉OP WQUERY OP DEC NODE 〈C2〉 〈Att2〉

OP WQUERY OP DEC NODE OP DEC AND
}

;

and the data subcipher is{
〈C̃〉 〈C0〉 〈Mainkey〉OP WQUERY OP DECRYPT

}
.

Corresponding to the above categories, we divide the pro-
cess of decryption into two steps: script decryption of attribute
subcipher and script decryption of data subcipher. Next,
taking the ciphertext under TI11 as an example, we will show
the process of script decryption in detail.

1) Script decryption of attribute subcipher: After reading
the attribute subcipher from ciphertext script, the interpreter
will execute this subcipher from left to right. As shown in
TABLE IV, the execution process is described as follows.
• Init. The stack is initialized and empty it in Step 1.
• The decryption of C1. In Step 2 and 3, script interpreter

pushes 〈C1〉 and 〈Att1〉 onto the stack in turn. Then it
runs the OP WQUERY algorithm to obtain the private
key 〈sk1〉 corresponding to attribute 〈Att1〉 in Step 4. In
Step 5, the interpreter runs the OP DEC NODE algo-
rithm and inputs 〈C1〉, 〈sk1〉, then returns the decryption
result 〈NAtt1〉 of 〈C1〉.

• The decryption of C2. Same as the decryption of C1,
script interpreter decrypts 〈C2〉 and pushes the decryption
result 〈NAtt2〉 of 〈C2〉 onto the stack in Step 6-9.

• The decryption of the root node. The interpreter takes
〈NAtt1〉, 〈NAtt2〉 as inputs and runs OP DEC AND
algorithm to get the decryption result NI11 of the root
node I11.

2) Script decryption of data subcipher: After decrypting
the attribute subcipher, the interpreter can use the decryption
result NI11 of the root I11 to recover the message from data
subcipher. As shown in TABLE V, the execution process is
described as follows.

2327-4662 (c) 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/JIOT.2021.3124016, IEEE Internet of
Things Journal

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, OCTOBER 2021 12

TABLE V: The execution process about script decryption of data subcipher under TI11
Stack Script Description

1 Empty 〈NI11 〉 〈C̃〉 〈C0〉 〈Mainkey〉 OP WQUERY OP DECRYPT

2 〈NI11 〉 〈C̃〉 〈C0〉 〈Mainkey〉 OP WQUERY OP DECRYPT 〈C̃〉 〈C0〉 〈A〉 added onto the stack.

3 〈NI11 〉 〈C̃〉 〈C0〉 〈Mainkey〉 OP WQUERY OP DECRYPT 〈Mainkey〉 added onto the stack.

4 〈NI11 〉 〈C̃〉 〈C0〉 〈Dk〉 OP DECRYPT The data private key 〈Dk〉 is exacted and
pushed onto the stack.

5 M Empty Decrypt ciphertext and get the message M .

TABLE VI: Comparison between existing CP-ABE schemes and ours

Scheme Decentralization Access
Structure

Standard
Model

Hardness
Assumption Group Order Programmable

Ciphertext

Jiang et al. [12] × AND-gate
√

DBDH Prime ×

Li et al. [14] × LSSS
√

Subgroup Decision Composite ×

Belguith et al. [15] × LSSS × CDH, DBDH Prime ×

Li et al. [17]
√

LSSS
√

q-PBDHE Prime ×

Liang et al. [18]
√

LSSS
√

Subgroup Decision Composite ×

Han et al. [22] × LSSS
√

q-BDHE, l-SDH Prime ×

Islam et al. [23] × Tree × CDH Prime ×

Our scheme
√

Tree
√

DLDH, DBDH Prime
√

• Init. The stack is initialized and empty it in Step 1.
• Wallet query. The script interpreter pushes 〈NI11〉 and

data subcipher 〈C̃〉 and 〈C0〉 onto the stack in Step
2-4. Next, the interpreter executes the OP WQUERY
algorithm to query the private key about data subcipher in
the wallet. Finally, the interpreter pushes the main private
key Dk onto the stack.

• The decryption of data subcipher. The interpreter runs
the OP DECRYPT algorithm to recover the message M .

VI. SYSTEM ANALYSIS

In this section, the performance and security of our system
are analyzed. Specifically, in terms of performance, we com-
pared the features, computation and storage overheads between
some ABE schemes and our construction. In terms of security,
we prove the privacy of our key-generation algorithm and the
security of our CP-DK-ABE scheme against selective plaintext
attack, respectively.

A. Performance Analysis

In TABLE VI, we make a comparison between seven ex-
isting CP-ABE schemes and ours in terms of decentralization,
access structure, security model, hardness assumption, group
order and ciphertext programmability. The schemes in [17],
[18] and ours are distributed ABE, but a trusted authority
center is necessary for managing the master secret key in other
schemes. Besides, there are only two schemes, [23] and ours,
to support tree-based access structure, which can express much
more complex policy compared with either AND-gate [12] or
LSSS [14], [15], [17], [18], [22]. In addition, the schemes,
[14] and [18], are constructed in composite order groups,

and the security proof of [15] and [23] depend on random
oracle. However, our scheme is constructed in prime order
groups and its security is reduced to the DLDH and DBDH
assumptions under the standard model. It is worth noticing that
only our scheme supports programmable ciphertext compared
with other ABE schemes.

Let E(G) and E(GT) denote exponentiation operations in
G and GT , respectively. M(GT) is multiplication operation
in GT and B is bilinear pairing operation. Define lG, lGT and
lZ∗p as the lengths of elements in G, GT and Z∗p, respectively.
Besides, k is the number of attributes in the whole system, n
is the number of full nodes and m is the number of attributes
in access policy. We neglect operations in Z∗p, multiplication
in G and hash operation, because they are much more efficient
than exponentiation operations.

In TABLE VII, we provide the comparison of computation
and storage costs between few existing DABE schemes ([17]–
[19]) and ours. It shows that, the computation costs of our
scheme, both encryption and decryption, are O(m), that means
the costs are linear with the number of attributes in access
policy. The encryption costs of [19] are similar as our scheme,
but its decryption costs are O(m + n), which is larger than
ours. The computation coats of [17] are also O(m + n) for
either encryption or decryption. The costs of each of these two
operations in scheme [18] are O(m), but they are larger than
those in our scheme.

We turn our attention to storage costs. In our scheme, the
size of the public key only relates to the number of full nodes,
while that of [18] is linear with the number k of attributes.
Considering practical DABE schemes, the number of attributes
is generally more than the number of full nodes, i.e., k >

2327-4662 (c) 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/JIOT.2021.3124016, IEEE Internet of
Things Journal

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, OCTOBER 2021 13

TABLE VII: Comparison of the computation and storage overheads

Computation Costs Storage Costs

Scheme Encryption Decryption Public Key Ciphertext

Li et al. [17] (n+3m) ·E(G)+n ·E(GT) (n+2m)·B+(3+m)·E(GT) (2n+ k) · lG (2m+ n) · lG + 2 · lGT

Liang et al. [18] (4m+ 1) · E(G) + 2m ·
E(GT) + 1 ·B + 1 ·M(GT)

4m ·B +m · E(GT) +
(3m− 1) ·M(GT)

3k · lG + k · lGT (3n+1)·lG+(n+1)·lGT

Nasiraee et al. [19] (2m+ 1) · E(G) + 1 ·
E(GT) + 1 ·B + 1 ·M(GT)

4m ·B + 2m · E(GT) +
(2n+ 2) · E(G)

(3n+ 3k) · lG 2m·lG+1·lGT +m·lZ∗p

Our scheme (2m+2) ·E(G)+1 ·M(GT) (2m+1)·B+(m−1)·E(GT) 2·lG+1·lGT +n·lZ∗p (2m+ 1) · lG + 1 · lGT

n. Therefore, our scheme is better than [18]. In addition, the
public key storage costs of schemes, either [17] or [19], are
O(m+ n). On the other hand, the ciphertext storage costs of
scheme [18] are linear with the number of full nodes, those
of either [19] or ours are linear with the number of attributes
in access policy, and those of [17] are linear with both the
number of attributes in access policy and the number of full
nodes. Therefore, our scheme has relative low storage costs.

To test the practical performance of our scheme, we im-
plement it based on the well-known Java Pairing Based
Cryptography Library (JPBC) and Intellij IDEA 2020.3.3.
The experiments are executed on 64-bit Windows 10 under
Intel(R) Core(TM) i5-4590S CPU @3.00GHz, 8G ROM. In
our experiments, we select the Type-A pairings on JPBC with
160-bit group order, where the pairings are constructed on the
curve y2 = x3 + x over the field Fq for some prime q = 3
mod 4 and the order r is some prime factor of q + 1.

TABLE VIII: Encryption and decryption time of our scheme

The number
of attributes

5 10 15 20 25

Encryption
time (ms)

128.43 259.38 352.27 497.18 616.06

Decryption
time (ms)

84.12 181.35 241.59 355.75 451.94

In TABLE VIII, we list the encryption and decryption
time of our scheme in the experiments. The running time of
encryption and decryption algorithms increases with higher
number of attributes in access policy, which is consistent with
the results of theoretical analysis in TABLE VII.

In Fig. 6 and 7, we further compare the encryption and
decryption time overheads of our scheme with those of [17]–
[19], respectively. For the sake of comparison, we set the
number of full nodes as n = 10. As shown in Fig. 6, the
encryption time of these four schemes increases with the
increases of attribute numbers in access policy. Specifically,
the encryption time of [17] is approximate to that of our
scheme, and they are lower than other schemes. Next, in Fig.
7 we make a comparison on the time costs of decryption
algorithms among the above-mentioned schemes. It is easy
to see the same results in which the decryption costs of
our scheme are better than other schemes. In summary, the
experiments’ results show that our scheme are efficient in
encryption and decryption processes.

 ! " "! #

$

%

&

"

"#

E
n
cr
y
p
ti
o
n
ti
m
e
(m
s)

The number of attributes

Li et al. [12]

Liang et al. [13]

Nasiraee et al. [14]

Ours

Fig. 6: Encryption time comparison with other schemes

 ! " "! #

$

%

&

"

"#

D
ec
ry
p
ti
o
n
ti
m
e
(m
s)

The number of attributes

Li et al. [12]

Liang et al. [13]

Nasiraee et al. [14]

Ours

Fig. 7: Decryption time comparison with other schemes

B. Privacy Analysis of Key Generation Algorithm

In this section, the privacy of our key-generation algorith-
m will be analyzed from two aspects: passive and active
adversary attack. Passive means that the adversary merely
eavesdrops on the communication line; active means that the
adversary who is monitoring the channel and may tamper with
the messages sent on it. The key privacy of our key generation
algorithm means that no information of the user’s private-
key, as the result of interactive process, as well as the master
secret key held by all of full nodes will be leaked no matter
whether the inputs of nodes are attacked by active or passive
adversaries.

Theorem 1. If both Shamir’s (t, n)-threshold secret sharing
scheme [28] and Decision Linear Diffie-Hellman (DLDH)
assumption hold, our key-generation algorithm is key private

2327-4662 (c) 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/JIOT.2021.3124016, IEEE Internet of
Things Journal

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, OCTOBER 2021 14

for a limited number of corrupted full nodes. That is, in the
case that at most of t − 1 full nodes are corrupted, for an
adversary A, the advantage of correctly guessing the input
value Θ =

∑n
i=1 θi about the blockchain nodes is negligible.

The proof of this theorem is presented in the supplementary
materials.

C. Security Analysis of CP-DK-ABE Scheme

In our CP-DK-ABE scheme, the security model of indistin-
guishability under chosen-plaintext attacks (IND-CPA) can be
described by the following game between an adversary A and
a challenger B as shown in Fig 8.

Adversary Challenger

1) Initialization Phase

2) Setup

3) Phase 1

4) Challenge

5) Phase 2

6) Guess

Fig. 8: Security game between adversary and challenger.

• Init. Adversary A announces the access policy W ∗ to be
challenged.

• Setup. Challenger B runs the Setup algorithm according
to the proposed scheme, then B sends the public key PK
to A and keeps the master key SKi as secrets.

• Phase 1. Adversary A makes private-key queries on its
attribute set A, where A does not satisfy the challenge
policy W ∗, i.e., A 2W ∗.

• Challenge. A outputs two message M0 and M1 ∈ GT
with the same length, then the challenger randomly picks
a number ρ ∈ {0, 1} and encrypts Mρ under the access
policy W ∗ following proposed Encryption algorithm.
Finally, B outputs the ciphertext CTW∗ .

• Phase 2. Same as the Phase 1, adversaryAmakes private-
key queries on some attribute sets. It requires that no
queried attribute set satisfies the policy W ∗.

• Guess. Adversary A outputs a guess ρ′ of ρ and wins the
game if ρ′ = ρ.

The advantage of A in the above game is defined as

AdvA =

∣∣∣∣Pr [ρ = ρ′]− 1

2

∣∣∣∣ , (15)

where the probability is taken over the random bits used by
the challenger and the adversary.

Definition 1. A CP-DK-ABE scheme is secure against the
IND-CPA, if for any PPT adversary A, its advantage AdvA
is negligible.

Theorem 2. Under the Decisional Bilinear Diffie-Hellman
assumption, our CP-DK-ABE scheme is semantically secure
under chosen-plaintext attacks (IND-CPA).

The proof of this theorem is presented in the supplementary
materials.

VII. CONCLUSION

In this paper, we propose a CP-DK-ABE scheme with
decentralized key generation, which is suitable to share the
sensitive data in BIoT. Specially, the master secret key is
managed by all of full nodes collectively. Moreover, we
ensure that, by designing the programmable ciphertext, each
of blockchain nodes can execute encryption and decryption
automatically through running the script system. This kind
of script-driven ciphertext can reduce the difficulty of pro-
gramming in BIoT devices. In addition, our key-generation
algorithm is proven to protect the secret key held by the full
nodes, and our CP-DK-ABE scheme is semantically secure
under the DBDH assumption.

ACKNOWLEDGMENT

This work was supported by the National Key Technologies
R&D Programs of China (2018YFB1402702) and the National
Natural Science Foundation of China (61972032).

REFERENCES

[1] M. A. Ferrag, M. Derdour, M. Mukherjee, A. Derhab, L. A. Maglaras,
and H. Janicke, “Blockchain technologies for the internet of things:
Research issues and challenges,” IEEE Internet Things J., vol. 6, no. 2,
pp. 2188–2204, 2019.

[2] M. F. Aziz, A. N. Khan, J. Shuja, I. A. Khan, F. G. Khan, and A. u. R.
Khan, “A lightweight and compromise-resilient authentication scheme
for IoTs,” Trans. Emerg. Telecommun. Technol., early access, Nov. 25,
2019.

[3] M. N. Alraja, H. Barhamgi, A. Rattrout, and M. Barhamgi, “An
integrated framework for privacy protection in iot - applied to smart
healthcare,” Comput. Electr. Eng., vol. 91, p. 107060, 2021.

[4] E. Chen, Y. Zhu, G. Zhu, K. Liang, and R. Feng, “How to implement
secure cloud file sharing using optimized attribute-based access control
with small policy matrix and minimized cumulative errors,” Comput.
Secur., vol. 107, p. 102318, 2021.

[5] A. B. Lewko, T. Okamoto, A. Sahai, K. Takashima, and B. Waters,
“Fully secure functional encryption: Attribute-based encryption and
(hierarchical) inner product encryption,” in Proceedings of Advances in
Cryptology - EUROCRYPT 2010. Springer, 2010, pp. 62–91.

[6] B. Waters, “Ciphertext-policy attribute-based encryption: An expressive,
efficient, and provably secure realization,” in Proceedings of Public Key
Cryptography - PKC 2011. Springer, 2011, pp. 53–70.

[7] Z. Liu, Q. Huang, and D. S. Wong, “On enabling attribute-based
encryption to be traceable against traitors,” Comput. J., vol. 64, no. 4,
pp. 575–598, 2021.

[8] A. Sahai and B. Waters, “Fuzzy identity-based encryption,” in Proceed-
ings of Advances in Cryptology - EUROCRYPT 2005. Springer, 2005,
pp. 457–473.

[9] J. Bethencourt, A. Sahai, and B. Waters, “Ciphertext-policy attribute-
based encryption,” in Proceedings of IEEE Symposium on Security and
Privacy (S&P 2007). IEEE, 2007, pp. 321–334.

[10] V. Goyal, O. Pandey, A. Sahai, and B. Waters, “Attribute-based encryp-
tion for fine-grained access control of encrypted data,” in Proceedings of
the 13th ACM Conference on Computer and Communications Security,
CCS 2006. ACM, 2006, pp. 89–98.

[11] C. Li, Q. Shen, Z. Xie, X. Feng, Y. Fang, and Z. Wu, “Large universe
CCA2 CP-ABE with equality and validity test in the standard model,”
Comput. J., vol. 64, no. 4, pp. 509–533, 2021.

[12] Y. Jiang, W. Susilo, Y. Mu, and F. Guo, “Ciphertext-policy attribute-
based encryption against key-delegation abuse in fog computing,” Future
Gener. Comput. Syst., vol. 78, pp. 720–729, 2018.

2327-4662 (c) 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/JIOT.2021.3124016, IEEE Internet of
Things Journal

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, OCTOBER 2021 15

[13] M. Chase, “Multi-authority attribute based encryption,” in Proceedings
of Theory of Cryptography, TCC 2007. Springer, 2007, pp. 515–534.

[14] Q. Li, J. Ma, R. Li, X. Liu, J. Xiong, and D. Chen, “Secure, efficient
and revocable multi-authority access control system in cloud storage,”
Comput. Secur., vol. 59, pp. 45–59, 2016.

[15] S. Belguith, N. Kaaniche, M. Laurent, A. Jemai, and R. Attia,
“PHOABE: securely outsourcing multi-authority attribute based encryp-
tion with policy hidden for cloud assisted iot,” Comput. Networks, vol.
133, pp. 141–156, 2018.

[16] A. B. Lewko and B. Waters, “Decentralizing attribute-based encryp-
tion,” in Proceedings of Advances in Cryptology - EUROCRYPT 2011.
Springer, 2011, pp. 568–588.

[17] J. Li, S. Hu, Y. Zhang, and J. Han, “A decentralized multi-authority
ciphertext-policy attribute-based encryption with mediated obfuscation,”
Soft Comput., vol. 24, no. 3, pp. 1869–1882, 2020.

[18] P. Liang, L. Zhang, L. Kang, and J. Ren, “Privacy-preserving decentral-
ized ABE for secure sharing of personal health records in cloud storage,”
J. Inf. Secur. Appl., vol. 47, pp. 258–266, 2019.

[19] H. Nasiraee and M. Ashouri-Talouki, “Anonymous decentralized
attribute-based access control for cloud-assisted iot,” Future Gener.
Comput. Syst., vol. 110, pp. 45–56, 2020.

[20] J. Li, Q. Yu, and Y. Zhang, “Hierarchical attribute based encryption with
continuous leakage-resilience,” Inf. Sci., vol. 484, pp. 113–134, 2019.

[21] Q. Tian, D. Han, X. Liu, and X. Yu, “Lwe-based multi-authority
attribute-based encryption scheme with hidden policies,” Int. J. Comput.
Sci. Eng., vol. 19, no. 2, pp. 233–241, 2019.

[22] D. Han, N. Pan, and K.-C. Li, “A traceable and revocable ciphertext-
policy attribute-based encryption scheme based on privacy protection,”
IEEE Trans. Dependable Secure Comput., early access, Mar. 2, 2020.

[23] M. A. Islam and S. Madria, “Attribute-based encryption scheme for
secure multi-group data sharing in cloud,” IEEE Trans. Serv. Comput.,
early access, Nov. 18, 2020.

[24] M. Möser, I. Eyal, and E. G. Sirer, “Bitcoin covenants,” in Proceedings
of Financial Cryptography and Data Security - FC 2016. Springer,
2016, pp. 126–141.

[25] S. Wang, Y. Yuan, X. Wang, J. Li, R. Qin, and F. Wang, “An overview
of smart contract: Architecture, applications, and future trends,” in
Proceedings of Intelligent Vehicles Symposium, IV 2018. IEEE, 2018,
pp. 108–113.

[26] M. Andrychowicz, S. Dziembowski, D. Malinowski, and L. Mazurek,
“Secure multiparty computations on bitcoin,” in Proceedings of Sympo-
sium on Security and Privacy, SP 2014. IEEE, 2014, pp. 443–458.

[27] S. Wang, Y. Zhu, D. Ma, and R. Feng, “Lattice-based key exchange on
small integer solution problem,” Sci. China Inf. Sci., vol. 57, no. 11, pp.
1–12, 2014.

[28] A. Shamir, “How to share a secret,” Commun. ACM, vol. 22, no. 11,
pp. 612–613, 1979.

Hongjian Yin received the M.S. degree from the
School of Mathematics and Statistics, Xidian Uni-
versity, Xi’an, China. He is currently a Ph.D. student
with the department of School of Computer and
Communication Engineering, University of Science
and Technology Beijing, China. His current research
interests include information security and cryptogra-
phy. (Email: honjanyin@163.com)

E Chen received the B.S. degree from the depart-
ment of School of Mathematics and Physics, Univer-
sity of Science and Technology Beijing, China. She
is currently a Ph.D. candidate with the department
of School of Computer and Communication Engi-
neering, University of Science and Technology Bei-
jing, China. Her research interests include attribute
based system and lattice cryptography. (Email: ch-
ene5546@163.com)

Yan Zhu is currently a professor with the School
of Computer and Communication Engineering, Uni-
versity of Science and Technology Beijing (USTB),
China. He was an Associate Professor in Peking
University, China, from 2007 to 2013. He was a vis-
iting scholar with the Arizona State University from
2008 to 2009 and University of Michigan-Dearborn
in 2012. His research interests include cryptography,
secure computation, and network security. (Email:
zhuyan@ustb.edu.cn)

Chengwei Zhao received the Ph.D. in Engineering
from Beijing University of Posts and Telecommu-
nications (BUPT) in 2019, and worked there from
2011 to 2020. Now, he is a postdoctoral fellow in
the Chinese Academy of Science and Technology
for Development (CASTED). His current research
interests include scientific and technological innova-
tion and regional collaborative innovation. (Email:
zhaocw@bupt.edu.cn)

Rongquan Feng received the Ph.D. in Mathemat-
ics from the Institute of Systems Science, Chinese
Academy of Sciences in 1994. He is currently a pro-
fessor in Peking University. He was a post-doctorate
fellow in Pohang University of Science and Tech-
nology (POSTECH), Korea from October 1995 to
August 1997, and a visiting professor there from
July 2002 to August 2003. His research interests are
in the areas of algebraic combinatorics, cryptology
and information security. He has published more
than 100 papers on these fields. He is now an

administrative committee member of Chinese Association for Cryptologic
Research. (Email: fengrq@math.pku.edu.cn)

Stephen S. Yau is currently a professor of computer
science and engineering in the School of Computing
and Augmented Intelligence at Arizona State Uni-
versity (ASU), USA. He served as the chair of the
Department of Computer Science and Engineering at
ASU in 1994-2001. Previously, he was on the fac-
ulties of Northwestern University, Evanston, Illinois,
and the University of Florida, Gainesville. He served
as the president of IEEE Computer Society, and was
on the board of directors of IEEE and of Computing
Research Association. He served as the editor-in-

chief of IEEE Computer magazine, organizing committee chair of 1989 World
Computer Congress sponsored by IFIP, and the chair of COMPSAC 1977
and its steering committee chair in subsequent years sponsored by IEEE
Computer Society. He was the general chair of 2018 IEEE World Congress on
Services, and an honorary co-chair of 2017 IEEE Smart World Congress. His
current research includes services and cloud computing systems, cybersecurity,
software engineering, and internet of things. He received Tsutomu Kanai
Award and Richard E. Merwin Award of IEEE Computer Society, and
Outstanding Contributions Award of Chinese Computer Federation. He is a
Fellow of the AAAS and IEEE. (Email: yau@asu.edu)

