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Abstract In this paper we present a designated verifier-set

signature (DVSS), in which the signer allows to designate

many verifiers rather than one verifier, and each designated

verifier can verify the validity of signature by himself. Our re-

search starts from identity-based aggregator (IBA) that com-

presses a designated set of verifier’s identities to a constant-

size random string in cryptographic space. The IBA is con-

structed by mapping the hash of verifier’s identity into zero or

pole of a target curve, and extracting one curve’s point as the

result of aggregation according to a specific secret. Consid-

ering the different types of target curves, these two IBAs are

called as zeros-based aggregator and poles-based aggregator,

respectively. Based on them, we propose a practical DVSS

scheme constructed from the zero-pole cancellation method

which can eliminate the same elements between zeros-based

aggregator and poles-based aggregator. Due to this design,

our DVSS scheme has some distinct advantages: (1) the sig-

nature supporting arbitrary dynamic verifiers extracted from

a large number of users; and (2) the signature with short and

constant length. We rigorously prove that our DVSS scheme

satisfies the security properties: correctness, consistency, un-

forgeability and exclusivity.
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1 Introduction

Jakobsson et al. [1] introduced the concept of designated ver-

ifier proof (DVP) in which only the verifier designated by the

confirmer can obtain any conviction on the correctness. As a

good example of such a situation, the designated verifier un-

deniable signatures (DVUS) were presented to guarantee that

only the intended verifier can be convinced about the validity

or invalidity of the signature for the confirmation protocol.

Following the above work, Steinfeld et al. [2] and Saeednia

et al. [3] introduced the designated verifier signatures (DVS),

which provides message authentication but does not require

public verification of traditional signatures. The purpose of

doing so is to enable the signers to have complete control

over their signatures. Such signature schemes have a broad

and special application prospect in the e-commerce and e-

government, such as electronic voting and electronic contract

signing.

For some fair contracts and distributed applications, the

DVS notion has been extended to multi-verifier settings. This

new kind of DVS is usually called multi-designated verifiers

signature (MDVS), in which the designated signature corre-

sponds to a group of specific verifiers. Exactly, it differs from

DVS in that the signer wants to convince multiple verifiers

of the signature’s validity in a cooperative way. There are

MDVS constructions, for example, Ng et al.’s scheme [4] is
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concentrated on the random oracle model, Shailaja et al.’s

scheme [5] without random oracle, Chang’s scheme [6] for

multi-signer and multi-verifier. These MDVS schemes allow

the signer or a signature holder to designate multiple verifiers,

but it requires that all designated verifiers must cooperate to

verify the validity of signature rather than a verifier.

Obviously, the cooperative work mode of MDVS is not

realistic for some applications, e.g., each designated veri-

fier expects to verify the validity of signature by oneself.

The cooperative way also implies the verification of signa-

ture is not complete or cannot be executed correctly only

if one of all verifiers is missing, refuses to take part in, or

maliciously conflicts with the verification. In addition, these

MDVS schemes have a complicated cryptographic frame-

work, e.g., the Steinfeld et al.’s scheme [2] consists of seven

algorithms and a verifier key-resignated protocol. This design

makes it difficult to apply for normal document or data signa-

ture. Aimed at these above-mentioned problems, in this paper

we intend to develop a new type of DVS, called designated

verifier-set signature (DVSS), for supporting the individual

verification of the designated verifiers in an independent way,

i.e., each of the designed verifiers is able to verify the validity

of signature. To provide ease of use, the DVSS scheme is ex-

pected to build on the identity-based cryptosystem (IBC), in

which the public key is the owner’s identity information, e.g.,

user’s name and email address. This design called identity-

based DVSS can simplify the management of public key and

naturally solve the binding problem between public key and

entity information.

Our contributions The challenge problem for construct-

ing a practical DVSS scheme lies in how to compress a des-

ignated set V of arbitrary size into a constant-size element.

Moreover, we require that this compression process works

in an efficient and secure way in order to prevent the adver-

sary from tampering with the designated verifier-set. To deal

with this challenge, we refer to the compression method in

existing literatures, e.g., Merkle-tree-based accumulator [7],

which is a binary tree that hashes a set of inputs into a short,

constant-size random string. In terms of this idea of accumu-

lator, we provide a new approach that combines all elements

of designated verifier-set into an algebra curve, rather than

a binary tree. For the purpose of maximizing compression,

we only pick up a determined point on the above curve as

a compressed representation of given verifier-set. This com-

pression process is called an aggregator. We require that the

range of values of the aggregator should be large enough and

its distribution is uniform, so as to achieve the purpose of

difficult-to-temper.

This approach also leads to another challenge for the

choice of algebraic curve. Aimed at this challenge, two kinds

of curves would be constructed by mapping all elements in

the designed set into the curve’s zeros or poles, respectively.

The advantage of generating zero-pole-based curves lies in

the ability to eliminate the same elements between zero-based

curve and pole-based curve by means of zero-pole cancella-

tion. Furthermore, we make this method to detect the exis-

tence of element from a given set. This means we can verify

whether the verifier belongs to a designated verifier-set.

In this paper, we intent to present a DVSS scheme by ap-
plying for the approach as mentioned above. In DVSS, the
signer allows to designate many verifiers rather than one ver-
ifier, and each of designated verifiers is able to verify the
validity of the signature by himself. To implement an effec-
tive DVSS scheme, our research starts from identity-based
aggregator (IBA) that compresses a designated set of ver-
ifier’s identities to a constant-size random string in crypto-
graphic space. The IBA is constructed by mapping the hash
of verifier’s identity into zero or pole of a target curve (ex-

pressed by pseudorandom polynomial), and extracting one
curve’s point as the result of aggregation according to a spe-
cific secret. Considering the different types of target curves,
we call two above-mentioned IBAs as zeros-based aggrega-
tor (ZerosAggr) and poles-based aggregator (PolesAggr), re-
spectively.

In terms of ZerosAggr and PolesAggr, we further propose
a practical DVSS scheme constructed from the zero-pole can-
cellation method. In DVSS, the signer encapsulates the result
of PolesAggr for a given verifier set as the signature. For a
given DVSS signature, the verifier firstly uses the public key
to produce the result of ZerosAggr over the verifier-set ex-
cept himself. And then, a commitment of pole (mapped from
verifier-identity) with secret is retrieved by using Zero-Pole
Cancellation and used to complete the final verification of
signature. Due to this design, our DVSS scheme has some
distinct advantages, such as, no limitation on the number of

designated verifiers, constant-size signature (merely five ele-

ments) and user’s private key, public key with user’s profiles

etc. Based on the random oracle model, we obtain:

• The first designated verifier-set signature for arbitrary

dynamic verifiers from a large number of users, so far,

all existing DVSS schemes only deal with static and

fixed number of verifiers.

• The designated verifier-set signature with short and

constant length.

Under the existing security models, our DVSS provably
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satisfies the general security properties, e.g., correctness and

consistency. Additionally, the unforgeability of our DVSS

scheme can be hold under the strong Diffie-Hellman (SDH)

assumption in the random oracle model. In addition, we in-

tend to introduce a new security notion called exclusivity.

Furthermore, we present a formal definition of exclusivity,

and then rigorously prove that our DVSS scheme has exclu-

sivity under the general Diffie-Hellman exponent (GDHE) as-

sumption with collusion attacks.

Related work Jakobsson et al. [1] firstly introduced the des-

ignated verifier proofs, both interactive and non-interactive,

based on trap-door commitment. Based on this concept, Ste-

infeld et al. [2] provided the first universal designated verifier

signature (UDVS) construction. Saeednia et al. [3] also pro-

posed a more intuitive definition and construction of strong

DVS scheme based on the simulator in zero-knowledge

proof. However, they only proved that the construction is ex-

istentially unforgeable under non-chosen message attacks.

After the identity-based encryption (IBE) were presented,

most of the proposed DVSs, e.g., [8–10], were constructed

on identity-based systems without public key certificate. For

example, Susilo et al. [11] proposed a generic construction

of identity-based strong DVS with low communication and

computation cost. And then, the security of this construc-

tion had been extended to not only non-delegatability [12],

but also delegatability [13]. There are some other schemes,

the security of which is closely related to the bilinear Diffie-

Hellman (BDH) problem [14] in the random oracle model,

e.g., [15, 16]. Though most of identity-based DVSs claimed

that the scheme satisfied the security requirements of all des-

ignated verifier signature, the proofs for these properties were

not provided in the literature we reviewed. It is worth men-

tioning that an efficient strong DVS on identity-based setting

was proposed by Sharma et al. [17], where the scheme was

strong existentially unforgeable against adaptive chosen mes-

sage attack (EUF-CMA) and adaptive chosen identity attack

(EUF-CIA). The identity-based DVS solves the management

problems of public key certificate in the traditional PKI, and

it has broad application prospects.

Generally, a DVS signature can only be verified by a

unique and specific user. Jakobsson et al. [1] have discussed

how their results can be extended to multiple designated veri-

fiers. And then, Laguillaumie and Vergnaud [18] put forward

a formal definition of multi-designated verifiers signature and

a security proof. Subsequently, the MDVS schemes were con-

tinuously developed, e.g., [4, 19]. Ming and Wang [20] pre-

sented a universal MDVS scheme according to the gap bilin-

ear Diffie-Hellman assumption, and proved its security in the

standard model. Seo et al. [21] proposed an identity-based

universal MDVS scheme by extending a single verifier to a

set of multi-verifiers. But it is a pity that these schemes re-

quire collaboration of designated verifiers to verify an ID-

based MDVS signature. The other noteworthy work also in-

cludes [22–25]. However, neither of all mentioned schemes

were designed to support a set of specific verifiers, which can

independently verify the validity of signature.

Organization Section 2 overviews some basic notions

and complexity assumptions. In Section 3, the definition of

DVSS is addressed. In Section 4, we propose a practical

DVSS scheme. And then, the security models are given in

Section 5. Finally, we conclude this paper in Section 6.

2 Preliminaries

In this paper, define U be a full set of all users in a system

and each user has a unique identity ID denoted by a string

{0, 1}∗. DenoteU as the identity, that is,U = {ID1, . . . , IDn}.
A function f : N �→ R is considered as a negligible function,

if for any c > 0 there exists n0 ∈ N such that f (n) < 1/nc

for all n > n0. Also a probability function g : N �→ R is con-

sidered as overwhelming if the function h(n) = 1 − g(n) is a

negligible function. For a probabilistic algorithm A, A(x, r)

is used to denote the output of A on input x with a random

input r. If r is not explicitly specified, it do so with the under-

standing that r is chosen statistically independent of all other

variables.

2.1 Bilinear pairing

The basic definition of bilinear pairings proposed by Boneh

and Franklin [26, 27] is briefly reviewed. Define S =

(p,G1,G2,GT , e(· , · )) be a bilinear group system if there ex-

ists an efficiently computable bilinear map e : G1 ×G2 → GT

that satisfies the following definition.

Definition 1 (Bilinear pairing) Let G1 and G2 be two ad-

ditive cyclic groups with prime order p, and define G,H as

the generators of G1 and G2, respectively. Let GT be a mul-

tiplicative cyclic group of same order p using elliptic curve

conventions. For any G ∈ G1, H ∈ G2 and all a, b ∈ Zp, a bi-

linear pairing is a map e : G1 × G2 → GT with the following

properties.

• Bilinearity: e([a]G, [b]H) = e(G,H)ab.

• Non-degeneracy: e(G,H) � 1 unless G = 1 or H = 1.
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• Computability: e(G,H) is efficiently computable.

2.2 Security problems

The security of the presented DVSS scheme depends on

the q-strong Diffie-Hellman (SDH) assumption and the gen-

eral Diffie-Hellman exponent (GDHE) assumption. The SDH

problem is defined as follows.

Definition 2 (q-SDH problem [28]) Define G,H be two

additive cyclic groups of prime p. Let g be a generator of G

and h a generator of H. The q-SDH problem in (G,H) is de-

fined as follows. Given a (q+2)-tuple (g, gγ, gγ
2
, . . . , gγ

q
, h) ∈

G
q+1 ×H, output a pair (ζ, g

1
γ+ζ ), where ζ ∈ Z∗p. An algorithm

A has advantage ε in solving q-SDH in (G,H) if

Pr[A(g, gγ, gγ
2
, . . . , gγ

q
, h) = (ζ, g

1
γ+ζ )] � ε,

where the probability is over the random choice of γ ∈ Z∗p
and the random bits consumed byA.

The problem is considered hard, such that the following

assumption holds.

Definition 3 ((q, t, ε)-SDH assumption [28]) The (q, t, ε)-

SDH assumption holds in (G,H) if no t-time algorithm has

advantage at least ε in solving the q-SDH problem in (G,H).

The complexity of this problem has been elaborated in the

following theorem.

Theorem 1 (Theorem 2 in [29]) Let g be an element of

prime order p in an abelian group. Suppose that d is a posi-

tive divisor of p+1 and gi := Gγ
i
for i = 1, 2, . . . , d are given.

Then γ can be computed in O(log p · (√(p + 1)/d+d)) group

operations using O(max{√(p + 1)/d,
√

d}) memory.

Given 〈g, gγ, . . . , gγd〉 for a positive divisor d of p + 1, as-

sume that d is large enough, this paper also indicates the

strong Diffie-Hellman problem and its related problems have

computational complexity reduced by O(
√

d) from that of the

discrete logarithm problem for such primes.

The general Diffie-Hellman exponent (GDHE) problem is

a more fundamental problem on the general bilinear map

group system S. Just consider the weakest case G1 = G2 = G

in S. Then, the GDHE framework is overviewed.

Definition 4 (GDHE problem [30]) Let P,Q ∈
Fp[X1, . . . , Xm]l be two l-tuples of m-variate polynomi-

als over Fp, where P = (p1, . . . , pl),Q = (q1, . . . , ql)

and l,m ∈ Z+. Define Ĝ, Ĥ be the generators of addi-

tive cyclic group G with prime order p. Given a vector

S = (ĜP(x1,...,xm), e(Ĝ, Ĥ)Q(x1 ,...,xm)) ∈ Gl × Gl
T and a random

element T in GT , decide whether or not T = e(Ĝ, Ĥ)h(x1,...,xm),

where the polynomial h ∈ Fp[X1, . . . , Xm].

Almost previous decisional Diffie-Hellman assumptions

can be reduced into GDHE assumption. An algorithmA that

outputs b ∈ {0, 1} has advantage ε in solving the GDHE prob-

lem if

AdvGDHE(A) = | Pr[A(S , e(Ĝ, Ĥ)h(x1,...,xm)) = 0]

− Pr[A(S , T ) = 0]| > ε.

2.3 Forking lemma

The forking lemma applied in the presented DVSS scheme

is introduced. In this lemma, considering that the ordi-

nary three-move signature schemes on the input message M

produce triplets (σ1, h, σ2) independent of previous signa-

ture. Those triplets can be described as a commit-challenge-

response protocol, where σ1 is a commitment, h is the hash

value of (M, σ1), and σ2 just depends on M, σ1, h.

Lemma 1 (Forking lemma [31]) Define A be a proba-

bilistic polynomial time Turing machine whose only the pub-

lic data be taken as input. Assume A produces a valid sig-

nature (M, σ1, h, σ2) with non-negligible probability ε. Then

there is another machine, which has control over A, outputs

two valid signatures (M, σ1, h, σ2) and (M, σ1, h′, σ′2) such

that h � h′with probability ε′ much smaller than ε.

This lemma uses the oracle replay attack with the same

random tape and a different oracle, two signatures of a spe-

cific form can be obtained which open a way to solve the

underlying hard problem.

3 Definition of the DVSS

In this section, the definition of DVSS over the set of iden-

tities is stated for supporting the independent verification

of individual verifier. That is, any verifier is able to verify

the validity of a signature. For sake of simplicity, suppose

that each user has a unique identity ID (e.g., Email address)

and the signer only needs to use the users’ identities to de-

fine the designated verifier-set. Benefited from the identity-

based cryptosystem (rather than the traditional CA’s certifi-

cate), a definition of DVSS is simplified to make it closer to a

common signature instead of a special CA’s signature in the

UDVS/DMVS schemes. Therefore, the DVSS consists of just

four algorithms which are defined as follows.
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Setup(S)→ (pk,msk). It takes as input a bilinear map group

system S under the security parameter κ. It outputs a sys-

tem’s public key pk and a master secret key msk, where

pk includes a list of users’ profiles pp.

KeyGenmsk(IDi)→ ski. It takes as input msk and ith user’s

identity IDi. It outputs the ith user’s secret key ski and

adds a user’s profile ppi to pp.

Signpk,ski(M,V)→ σ. It takes as input the public key pk, a

signing private key ski, a message M ∈ {0, 1}* and the

set of designated verifiers V = {ID j}mj=1. It outputs a sig-

nature σ on the message M.

Verifypk,sk j(IDi,M, σ,V)→ 0/1. It takes as input pk, the jth

verifier’s secret key sk j, a signature σ on a message M

for a given signer IDi, and the set of designated verifiers

V = {ID j}mj=1. It outputs 0 (invalid) or 1 (valid).

The number of users in system is not limited, and a new

user can be dynamically added to the system by using the

KeyGen algorithm. The user’s profile, some personal in-

formation and public cryptographic parameters, is used to

omit “Verifier Key-Registration Protocol”1) in the UDVS [2].

Moreover, the definition of DVSS does not follow the proce-

dure of the CA’s certificate (used in the UDVS and DMVS

schemes) because the notion of “Personal Public-key Certifi-

cate” has cleared away in the identity-based cryptosystem.

Hence, the number of algorithms is reduced from seven [2]

to four in the presented DVSS scheme. In addition, a DVSS

scheme must meet the following properties, whose general

definitions are presented as follows.

Correctness. The valid signature σ produced by the signer

IDi can be accepted as valid by the designated verifier ID j ∈
V , that is,

Pr

⎡
⎢⎢⎢⎢⎢⎣Verifypk,sk j

(IDi,M, σ,V) = 1

∣∣∣∣∣∣∣

∃ID j ∈ V,

Signpk,ski
(M,V) = σ]

⎤
⎥⎥⎥⎥⎥⎦ = 1.

Consistency. Given a signature σ on message M signed by

IDi, the outputs of all designated verifiers are consistent, that

is, for any ID j, IDk ∈ V( j � k), they yield the same verifca-

tion results with the probability 1,

Pr

⎡
⎢⎢⎢⎢⎢⎣b = b′

∣∣∣∣∣∣∣

Verifypk,sk j
(IDi,M, σ,V) = b,

Verifypk,skk
(IDi,M, σ,V) = b′

⎤
⎥⎥⎥⎥⎥⎦ = 1.

Unforgeability. For a given signer IDi and a designated

verifier-set V = {ID j}mj=1 (IDi � V), the successful probability

of establishing a valid DVSS signature σ∗ on message M∗ is

negligible, i.e.,

Pr

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

Verifypk,sk j
(IDi,

M∗, σ∗,V) = 1

∣∣∣∣∣∣∣∣∣∣∣∣∣

(pk,msk)← Setup(S),

ski ← KeyGenmsk(IDi), ID j ∈ V,

{skk}IDk∈V ← KeyGenmsk(IDk ∈ V),

(M∗, σ∗)← ASignpk,ski
(·,·)(pk, {skk}IDk∈V )

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
< ε.

Exclusivity. For a given signer IDi, the (valid or invalid) sig-

natureσ∗ on the chosen message and a designated verifier-set

V = {ID j}mj=1, the successful probability that the signature can

be accepted as valid by the designated verifier IDk � V is neg-

ligible even if the adversaryA has the valid private key, that

is,

Pr

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

b = b∗

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

(pk,msk)← Setup(S),

ski ← KeyGenmsk(IDi ∈ V),

(M∗
0 ,M

∗
1)← AKeyGenmsk (IDk�V)(IDi,V),

b ← {0, 1}, σ∗ ← Signpk,ski
(M∗

b ,V),

b∗ ← ASignpk,ski
(·,·)(M∗

1, σ
∗)

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

<
1
2
+ ε.

The generated signature needs the designated verifier’s in-

formation derived from the verifier’s identity and the corre-

sponding profile information in the public key. The public

key, considered as a management tool for a large number of

users, consists of the master public key and a user’s profile

list. Exactly speaking, the joining and revoking operations on

the users can be implemented by adding and deleting pro-

files in the public key. In addition, we can make use of these

profiles to provide an on-line search service for querying a

specified user.

4 The DVSS scheme

In this section, we present an effective DVSS scheme to

meet our design goals. Before describing the scheme, we first

propose the concept of identity-based aggregator (IBA) and

its two instances, which are core components in the DVSS

scheme. The practical DVSS scheme is then presented in the

random oracle model.

4.1 Identity-based aggregator

The core technical problem of designing a constant-size and

short DVSS signature lies in how to compress a designated

set V of any size into an O(1)-size representation in cryptog-

raphy. From the recent researches, the answer of this problem

is moving steadily closer to “the truth”. For example, a triv-

ial approach was presented by [32] in which each element in

the set was mapped into one item in cryptosystem for authen-

ticating membership, i.e., the size of mapping is O(m) for a

1) The verifier key-registration protocol of UDVS is to force the verifier to know the secret-key corresponding to his public-key
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set with m-size. In [33], the representation of compressed set

can be optimized to O(
√

m) size by arranging the elements

in a ∗ b array, where m = ab. In [7], a lattice-based accumu-

lator is proposed to achieve O(log m) by using a binary tree

structure. This result was heading towards the optimal result

O(1). From the above analysis, it is not hard to see that the

structure, used to compress the set, is the key to realize an

effective representation of set.

For a set of designated verifiers V = {ID j}mj=1 ⊆ U with any

size m, we present an algebraic curve approach to represent

the set V . Ideally, such a representation of set has nothing to

do with the size m of the set V , that is, the size of representa-

tion of V is O(1). In this approach, we introduce a new cryp-

tographic algorithm, called identity-based aggreagator (IBA),

that can compress the public-key information of a set (of any

size) into a constant-size value. Exactly, such a aggregator is

stated as follows.

Definition 5 Let PK denote the public key space over a

group G. Given a setU, the identity-based aggregator Aggr :

PK × 2U �→ G is a deterministic polynomial time algorithm

satisfying Aggr(pk,V) = RV , where pk is a public key inPK ,

a subset V ⊆ U and RV is called the representation of set V .

The approach of constructing this algorithm is to build an

algebraic curve f (x) using a polynomial through all points

that derived from the designated verifier-set. To do it, each

element (user’s identity ID j) of V is firstly mapped into one

random point in the curve space by using cryptographic hash

function, i.e., x j = hash(ID j). And then, all these points

{x j}∀ID j∈V are considered as zeros or poles to make up the

expected curve f (x). A rational polynomial function has the

form f (x) = P(x)
Q(x) that is the quotient of two polynomial P(x)

and Q(x). We say the value z is a zero of f (x) if P(x) = 0, and

z is a pole of f (x) if Q(x) = 0. Note that, the number of zeros

or poles is unlimited in f (x).

Next, a specific point can be picked out from the curve f (x)

as the IBA. This output point must be enough random to guar-

antee the unpredictability of IBA. We provide a simple way

to do this, that is, the system manager chooses a secret γ and

the corresponding value f (γ) is regarded as the IBA of the

set V . The randomness of f (γ) can be ensured because of the

uniform distribution of hash mapping of each element in V

and the randomness of γ. Moreover, this way will be proved

enough secure to prevent from forging signature in Section 5.

According to the above approach, two types of IBAs are

presented. These two aggregators work on the following

cryptographic surrounding. Let PK be a public key space

over a multiplicative cyclic group G of prime order p and

G,H are two generators in G. In addition, define γ ∈ Z∗p
be an unknown secret and a cryptographic hash function

hash : {0, 1}∗ �→ Z∗p, i.e., xi = hash(IDi).

I. Zeros-based aggregator (ZerosAggr) Given a public pa-

rameter pk = {Gi = Gγ
i }ni=1 ∈ PK for a secret γ and a subset

V = {ID j}mj=1 ⊆ U (m < n), there exists a polynomial-time

algorithm ZerosAggr that outputs

GV = ZerosAggr(pk,V) = Gγ
∏

ID j∈V (γ+x j). (1)

How to implement the ZerosAggr is shown below. Given

all known {xi}ni=1. Define a polynomial fV (x) = x
∏

ID j∈V (x +

x j) =
∑m

k=0 akxk+1 (mod p) of degree m + 1 over V and com-

pute the coefficients ak ∈ Z∗p for all k ∈ [0,m]. It uses pk

to compute GV = G fV (γ) = Gγ
∏

ID j∈V (γ+x j) = G
∑m

k=0 akγ
k+1
=

∏m+1
k=1 Gak−1

k , where Gk ∈ pk. When V = ∅, we define

ZerosAggr(pk, ∅) = G1.

II. Poles-based aggregator (PolesAggr) Given a public pa-

rameter pk′ = {Hi = H
1
γ+xi }ni=1 ∈ PK for a secret γ and a

subset V = {ID j}mj=1 ⊆ U (m < n), there exists a polynomial-

time algorithm PolesAggr that outputs

HV = PolesAggr(pk′,V) = H
∏

ID j∈V
1

(γ+x j ) . (2)

A recursive algorithm is provided to implement the Pole-
sAggr from pk′ = {Hi}i∈[1,n] as follows. Define a polyno-

mial gV (x) = 1∏
ID j∈V (x+x j)

(mod p) of degree m over V . Given

Hi and H j, it is easy to obtain the equation (H j/Hi)
1

xi−x j =

(H
1
γ+x j /H

1
γ+xi )

1
xi−x j = H

1
(γ+xi)(γ+x j ) , where xi � x j is a pre-

condition for this equation. Next, this equation is expanded

to multi-value cases. Define Bs,r = H
∏r

k=s
1

(γ+xk ) , where 1 �
s < r � m. In the same way, the equation Bs,r+1 =

(Bs,r/Bs+1,r+1)
1

xr+1−xs can be computed. By using this equation,

the output value HV = B1,m can be completed in a recursive

way: Br,r = Hr for ∀r ∈ [1,m], and Bs,r = (Bs,r/Bs+1,r)
1

xr−xs

for s ∈ [1,m− 1], r ∈ [2,m], where Br,r is the initial input Hr

for r = [1,m].

In summary, the above aggregators do not have a limit to

the size of the input set. More importantly, we can employ a

zero-pole cancellation method to eliminate the same elements

between ZerosAggr and PolesAggr. By using this method,

we are able to construct a DVSS to meet our goals.

4.2 Our DVSS construction

A practical scheme for the identity-based DVSS on a bilinear

map system S = (p,G1,G2,GT , e(· , · )) of prime order p is

presented. In cryptosystem, given a full setU = {IDi}ni=1 of all



E CHEN et al. Zero-pole cancellation for identity-based aggregators: a constant-size designated verifier-set signature 7

users and a designated verifier-set V = {ID j}mj=1 ⊂ U, where

the size ofU and V are not restricted and m < n. The scheme

adopts two hash functions: hash1 : {0, 1}∗ → Z∗p which maps

any identity ID described as a binary string to a random value

xi ∈ Z∗p (i.e., xi = hash1(IDi)), and hash2 : {0, 1}∗ → Z∗p
which maps any string to a random value u ∈ Z∗p. 2) In order

to complete the verification procedure, we use the Zero-Pole

Cancellation method which eliminates the same elements in

the exponential part between the encapsulated result of Pole-
sAggr and the produced result of ZerosAggr.

Setup(S). This algorithm chooses two random generators G

and H in G1 and G2, respectively. Let m be the max-

imum number of aggregated users in the ZerosAggr.

Then, it randomly picks γ, ε ← Z∗p, and defines R =

e(G,H)ε, H′ = Hγ and Gi = Gγ
i

for i ∈ [1,m]. It out-

puts the master secret key msk = (γ, ε,G) and the public

key pk = {S,H,H′,R, {Gi}i∈[1,m], pp = ∅}, where pp is a

list of users’ profiles.

KeyGenmsk(IDi). Given an IDi ∈ U, the algorithm defines

xi = hash1(IDi) and computes the user’s private-key

ski = G
xiε
γ+xi and Hi = H

ε
γ+xi . Furthermore, the user’s

profile ppi = (IDi,Hi) is appended into pp.

Signpk,ski(M,V). The algorithm takes as input pk, a signer’s

private key ski, a message M ∈ {0, 1}*, and a set of

designated verifiers V . It proceeds the following steps.

1) It invokes PolesAggr(pk,V) to produce HV , picks

two random integers λ and s in Z∗p, then computes

the commitments

C1 = Hλ, C2 = sk
s
xi
i , C3 = (HV )λ,

where HV = Hε
∏

IDi∈V
1
γ+xi and C2 = G

sε
γ+xi .

2) It computes a referred value R̄ = Rλ/s =

e(G,H)ελ/s.

3) It calculates a challenge value c =

hash2(C1,C2,C3,M,V, R̄) ∈ Z∗p.

4) It yields μ = cs
λ
+ 1

s (mod p), and outputs the final

signature

σ← (C1,C2,C3, c, μ).

Verifypk,sk j(IDi,M, σ,V). The algorithm takes as input pk,

the jth verifier’s private key sk j, a signature σ =

(C1,C2,C3, c, μ) on a message M for a given signer IDi,

and the set of designated verifiers V . Then it proceeds

the following steps.

1) If the relation ID j ∈ V holds, it sets V− =
V\{ID j}, then invokes ZerosAggr(pk,V−) to pro-

duce GV− = Gγ
∏

IDi∈V− (γ+xi). For every designated

verifier ID j, the value R̄′ is reconstructed as

R̄′ =
(
e(sk j,C1) · e(GV− ,C3)

)μ ·e(C2, (H
′ ·Hxi)c)−1.

2) It retrieves c′ = hash2(C1,C2,C3,M,V, R̄′). If

c′ = c, accepts and outputs 1; otherwise, rejects

and outputs 0.

Correctness. The correctness of verification procedure is

demonstrated as follows.

• Assume the verifier ID j ∈ V holds a private key sk j =

G
x jε

γ+x j and the signature σ = (C1,C2,C3, c, μ) produced

by the signer IDi, where μ = cs
λ
+ 1

s (mod p). If the re-

lation ID j ∈ V holds, the value R̄′ that is equal to R̄ is

recovered by the following equation.

R̄′ =
(
e(sk j,C1) · e(GV− ,C3)

)μ · e(C2, (H′ · Hxi )c)−1

=

(
e(G

x jε

γ+x j ,Hλ) · e(Gγ
∏

IDi∈V− (γ+xi), (Hε
∏

IDi∈V
1
γ+xi )λ)

)μ

e(G
sε
γ+xi , (Hγ · Hxi)c)

=
e(G,H)

x jε

γ+x j
·λ·μ · e(G,H)

γ·μ
∏

IDi∈V (γ+xi )

γ+x j
· ε·λ∏

IDi∈V (γ+xi )

e(G,H)
sε
γ+xi
·(−c)(γ+xi)

= e(G,H)
x jελμ

γ+x j
+
γελμ
γ+x j
−csε
= e(G,H)ελμ−csε

= e(G,H)ελ/s = R̄.

• The hash value c′ is equal to c such that the signature

will be accepted.

Consistency. The consistency of the verification results for

different verifiers is described. Assume ID j and IDk be two

different verifiers in V , i.e., ID j, IDk ∈ V and j � k, they hold

two private keys sk j and skk, respectively. Let V ′− = V \ {ID j}
and V ′′− = V \ {IDk}. These two verifiers use the public key

pk to compute GV ′− = G
γ

∏
IDi∈V (γ+xi)

(γ+x j ) and GV ′′− = Gγ
∏

IDi∈V (γ+xi)

(γ+xk ) ,

respectively. In terms of the similar analysis in the step 1) of

the verification algorithm, the following equation holds.

e(sk j,C1) · e(GV ′− ,C3) = e(skk,C1) · e(GV ′′− ,C3) = e(G,H)ελ.

Meanwhile, the value of e(C2, (H′ · Hxi)c)−1 yielded by ID j

is the same as that of IDk. Therefore, they are able to retrieve

the correct R̄ and accept the signature.

Performance. In the presented DVSS scheme, the new user

can be added into the system, and the total number of users is

not restricted. The number of designated verifiers is also not

2) We like to make such a distinction because two hash functions have the different security properties as discussed later
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restricted in a DVSS signature as long as m is big enough.

The verifier in the set V is dynamic. Moreover, the size of

signature σ = (C1,C2,C3, c, μ) ∈ G2 × G1 × G2 × (Z∗p)2 is

a constant |G1| + 2|G2| + 2|Z∗p|. This value is independent on

the size of a designated verifier-set, which is an important

property for the practical applications. In addition, the user’s

secret key ski is only an element in G1. In order to improve

the performance of scheme, two IBAs can be pre-computed

based on the public key pk for a given set V .

5 Security analysis

5.1 Security analysis of unforgeability

Since the forger may accuse the other verifiers in the desig-

nated verifier-set V of forging signatures, the presented DVSS

does not allow the designated verifiers to produce signatures.

A clear unforgeability definition for the DVSS scheme is

firstly presented. According to the construction of DVSS, the

hash functions are regarded as random oracles controlled by

the challenger. The DVSS scheme can be proved to be exis-

tential unforgeable against weak chosen message attacks in

the random oracle model. Therefore, a game between a chal-

lenger and an adversaryA is defined as follows.

Setup For the set U, the challenger takes S as input and

runs KeyGen algorithm in the DVSS scheme to obtain

a public key pk, a master private key msk and the user’s

private key ski. Then, the challenger gives pk toA.

Learning Before the queries, A sends a list of l users U =

{IDk}lk=1 to the challenger, which will chosen a chal-

lenge identity IDk ∈ U . State that A can query any

message as he/she likes from the signer. And A per-

forms a polynomially bounded number of queries, each

query may depend on the responses of previous queries.

Suppose A is given access at most qh times to oracle

Hash(·) and qs times to oracle S ign(·), respectively. The

types of queries are represented as follows.

1) hash1-Queries. WhenA makes a query to the or-

acle, the challenger assigns the value toA.

2) ExtractKey-Queries. When A arbitrary chooses

a user IDk ∈ U , the challenger runs

KeyGenmsk(IDk) = skk but IDk � IDi according

to the DVSS scheme and sends the result toA.

3) hash2-Queries. WhenA queries the hash value to

the oracle, the challenger outputs the hash value c

if the query has existed.

4) Signing-Queries. A queries a signature on the

message M and V ⊆ U . WhenA queries a signer

IDi to sign it, the challenger computes the pri-

vate key ski of user IDi and generates a signature

σi = Signpk,ski
(M,V). Finally, the challenger re-

turns the signature σi toA.

Forgery A returns a forgery (M∗, σ∗) such that σ∗ is a valid

signature if σ∗ � {σi}li=1, where the signature σi is gen-

erated during the query phase.

Verify A sends a valid pair (M∗, σ∗) to the challenger. A
wins the game if Verifypk,sk j

(IDi,M∗, σ∗,V) = 1, where

sk j is the private key of designated verifier ID j ∈ V .

We define the advantage AdvSigA of an adversaryA in at-

tacking the signature scheme as the probability that A wins

the above game, where the advantage is taken over the ran-

dom bits of the challenger and A. A formal definition of ex-

istential unforgeability is presented as follows.

Definition 6 (Unforgeability) A forger A (t, qh, qs, ε)-

weakly breaks a DVSS scheme ifA runs in time at most t,A
makes at most qh hash queries and qs signature queries, and

AdvSigA is at least ε. Then, a DVSS scheme is (t, qh, qs, ε)-

existentially unforgeable under a weak chosen message at-

tack if there exists no forger that (t, qh, qs, ε)-weakly breaks

it.

The following theorem shows that the DVSS scheme is ex-

istentially unforgeable under weak chosen message attacks,

provided that the q-SDH assumption holds in (G,H).

Theorem 2 (Unforgeability of DVSS scheme) Suppose

the (q, t′, ε)-SDH assumption holds in (G,H). Then the pro-

posed DVSS scheme is (t, qh, qs, ε)-secure against existential

forgery under a weak chosen-message attack in the random

oracle model provided that

t � t′ − O(q2), qs � q.

The full proof of this theorem is presented in Appendix A

based on the q-SDH assumption in the random oracle model.

5.2 Security analysis of exclusivity

In the presented DVSS scheme, a set V of special verifiers

is given. Each of the designed verifiers in the set is able to

independently verify the validity of a signature. Meanwhile,

the verification procedure is invalid for other members out

of V even if they have many valid private keys issued by the

algorithm manager. Such a property is called exclusivity.
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A exclusivity definition for the presented DVSS scheme

is firstly proposed. To prove that the scheme holds the se-

mantic exclusivity against chosen message attack (Ex-CMA)

with learning corrupted users R = {IDk}tk=1, a game between

a challenger and an adversaryA is described as follows.

Setup The challenger takes as input a challenge set Q =
{IDk}n−t

k=1 ⊂ U chosen by A, runs Setup algorithm in

the DVSS scheme to obtain a public key pk and a mas-

ter private key msk. Then, the challenger sends pk to

A.

Learning The challenger defines the set of t corrupted users

R such that R = U \ Q, and sends it to A. A performs

a polynomially bounded number of repeated queries for

a user’s identity. Also,A can issue up to t times private

key queries and n − t times label queries to obtain the

knowledge of this cryptosystem. The types of queries

are described as follows.

1) PrivateKey-Queries (IDk ∈ R). When A makes a

query IDk ∈ R, the challenger assigns the hash

value xk = hash1(IDk) to A. Moreover, the chal-

lenger runs KeyGenmsk(IDk) = skk and Hk ac-

cording to the DVSS, then sends skk and (IDk,Hk)

toA.

2) PublicLabel-Queries (IDk � R). When A makes

a query IDk � R, the challenger replies x′k =
hash1(IDk) toA. And, the challenger merely runs

KeyGen algorithm to compute Hk. Finally, the

challenger sends (IDk,Hk) toA.

3) hash2-Queries. When A queries the hash value,

the challenger outputs c if the value has existed.

4) Signing-Queries. A queries a signature on the

message Mi for a designated signer IDi ∈ Q. The

challenger runs the signing algorithm to generate

the signature σi = Signpk,ski
(Mi,V). Finally, the

challenger returns the pair (Mi, σi) toA.

Challenge After learning, A returns two messages M∗0 and

M∗1. The challenger flips a random coin b ← {0, 1} and

generates the signature σ∗ = Signpk,ski
(M∗b,V) for the

signer IDi ∈ Q and sends (M∗1, σ
∗) toA.

Learning This is the same as the above learning process.

Guess A returns a guess b∗ ∈ {0, 1} to the challenger. If

b∗ = b, the challenger outputs 1 (True), otherwise, it

outputs 0 (False).

We define the advantage of an adversary A in attacking

the signature scheme as the probability thatAwins the above

game, where the advantage is taken over the random bits of

the challenger and the adversary. The advantage of an adver-

sary A in this game is defined as AdvEx-CMA
DVSS,A (n, t) = | Pr[b∗ =

b] − 1/2|. A formal definition of exclusivity is introduced as

follows.

Definition 7 (Exclusivity) Given a (valid or invalid) signa-

ture σ on a message M and a designated verifier-set V , it is

computationally infeasible to verify the validity of the signa-

ture σ for a verifier IDk � V even if the verifier IDk has the

valid private key skk, that is, the advantage AdvEx-CMA
DVSS,A (n, t)

that can be accepted as valid is negligible under the above

game.

The semantic exclusivity of the DVSS scheme is proved

under the assumption of GDHE problem [30, 34]. Let f (x)

and g(y) be two known random polynomials of degree t

and n − t with pairwise distinct roots, respectively. Define

h(x, y, z) = f 2(x)g(x)yz be a three-variable polynomial in a

bilinear group system S = (p,G1,G2,GT , e(·, ·)). Based on

the above polynomials, a computational problem which is

used to prove the semantic security of the presented DVSS

scheme is defined as follows.

Theorem 3 ((n, t)-GDHE Problem [35]) Let γ, λ, ε ∈ G∗p
be three secret random variables and Ĝ, Ĥ are two genera-

tors of G1 and G2, respectively. Define f (X) =
∏t

i=1(X +

xi) =
∑t

i=0 aiXi and g(X) =
∏n−t

i=1(X + x′i ) =
∑n−t

i=0 biXi are

two polynomicals, where ai, bi ∈ Z∗p. Given the values in

(F1, F2, F3, h)-GDHE problem with

⎧
⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

F1(γ, λ, ε) = 〈Ĝε, Ĝγε, . . . , Ĝγt−1ε, Ĝγ f (γ), . . . , Ĝγ
m f (γ)〉,

F2(γ, λ, ε) = 〈Ĥε, Ĥγε, . . . , Ĥγnε, Ĥ f (γ)g(γ), Ĥλ f (γ)g(γ), Ĥλε f (γ)〉,
F3(γ, λ, ε) = e(Ĝ, Ĥ)ε f 2(γ)g(γ),

h(γ, λ, ε) = λε f 2(γ)g(γ), and a random value T ← GT ,

decide whether or not T = e(Ĝ, Ĥ)h(γ,λ,ε). For any algo-

rithm A whicht makes a total of at most q queries to the

oracle computing the group operation in G1,G2,GT and the

bilinear pairing, the advantage of A is AdvGDHE,A(n, t) �
[q+2(n+t+m+4)+2]2 ·2n

2p .

We provide the proof of this theorem in Appendix B of

[35]. Based on (n, t)-GDHE problem, the exclusivity of the

presented DVSS scheme satisfies the following theorem.

Theorem 4 (Exclusivity of DVSS scheme) Suppose the

(n, t)-GDHE problem is hard in S, then the DVSS scheme

is semantically exclusive against chosen-message attack (Ex-

CMA) with colluders.
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The proof of this theorem is provided in Appendix B based

on the GDHE assumption. Additionally, due to the number of

corrupted users t is not restricted, the DVSS scheme is secure

for arbitrary large collusion of corrupted users.

6 Conclusion

In view of the requirement that the generated signature can

be verified by many parties, we present the first designated

verifier-set signature with short and constant length for ar-

bitrary dynamic verifiers from a large number of users. We

firstly propose two identity-based aggregators that compress

a designated set of verifier’s identities to a constant-size ran-

dom string in cryptographic space. Our main contribution is

to propose a DVSS scheme constructed from the zero-pole

cancellation method which can eliminate the same elements

between zeros-based aggregator and poles-based aggregator.

Simultaneously, we prove that the DVSS scheme is secure

into the sense of unforgeability and exclusivity, respectively.

For future work, we will improve the performance and apply

our scheme into some practical applications, e.g., broadcast-

ing, keyword searching, and voting.
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Appendixes

Appendix A. Proof of Theorem 2

Proof. Assume that A (t, qh, qs, ε)-weakly breaks the sig-

nature scheme, then there exists a polynomial time algo-

rithm B which solves the q-SDH problem in time t′ with

non-negligible probability ε by interacting with A and us-

ing the forking lemma. Before the simulator B is executed,

we suppose A sends a list of l users U = {IDi}li=1 (l < q,

we assume q is large enough) to B. Meanwhile, suppose

the algorithm B takes as input a known random sequence

〈g, gγ, gγ2
, . . . , gγ

q〉 ∈ G1, and expects to output 〈ζ, g 1
γ+ζ 〉,

where γ is unknown and ζ ∈ Z∗p. B does so by interacting

with the forgerA as follows.

Setup B randomly chooses l values {xi}li=1 in Z∗p, which are

stored as a part of public key. Also, B picks two ran-

dom elements ε, λ,← Z∗p, and constructs a polynomial:

f (x) =
∏l

i=1(x + xi) =
∑l

i=0 aixi, where the coefficient

ai can be calculated from {xi}li=1. Moreover,B defines

G = g f (γ) =
∏l

k=0
gγ

kak ,H = h f (γ) = (ϕ(g)) f (γ) = ϕ(G),

H′ = Hγ = ϕ(
∏l

k=0
gγ

k+1ak ), R = e(G,H)ε,

Gi = Gγ
i
=
∏l

k=0
gakγ

i+k
,Hi = H

ε
γ+xi = ϕ(

∏l−1

k=0
gγ

kbkε),

where the equation l+m � q must be satisfied if {Gi}mi=1

is constructed, and the user’s public profiles pp =

{(xi,Hi)l
i=1} is assigned by using f ′i (x) =

∏l
k=1(x+xk)

x+xi
=

∑l−1
k=0 bkxk if xi ∈ {xk}lk=1. Then, B gives the public key

pki = {H,H′,R, {Gi}mi=1, {(xi,Hi)l
i=1}} toA. Since the re-

lation (γ + xi)| f (γ) holds, the value g
f (γ)
γ+xi =

∏l−1
k=0 gdkγ

k

can be computed, where the coefficient di can be calcu-

lated and g, gγ, . . . , gγ
l
is known.

Learning The types of queries allowed in our DVSS are de-

scribed as follows.

1) hash1-Queries. When A queries IDi ∈ U , B di-

rectly assigns xi = hash1(IDi) toA. Otherwise, B
selects a random element ωi ∈ Z∗p and stores ωi in

case the same query is made again.

2) ExtractKey-Queries. When A makes a query

IDi ∈ U , the algorithm B computes

KeyGenmsk(IDi) = ski = G
xiε
γ+xi according to the

DVSS scheme. Then,B gives ski toA. Otherwise,

B does not respond this query.

3) hash2-Queries. WhenA queries the hash value on

(C1,C2,C3,M,V, R̄), B directly outputs c if this

query has already existed. Otherwise, B sends a

random value c ∈ Z∗p to A as the hash value, and

stores the result c and (C1,C2,C3,M,V, R̄).

4) Signing-Queries. When A queries a signature on

the message M and the set of designated verifiers

V , B responds as follows. If A assigns the signer

IDi ∈ U to sign the message M, B uses the iso-

morphism ϕ to compute

C∗1 = Hλ = ϕ[(gd0gd1γ · · ·gdlγ
l
)λ] = ϕ(

∏l

k=0
gdkγ

kλ).

Also, B obtains the private key ski of the user

IDi (as the ExtractKey-Queries described), thenB
chooses the random value s ∈ Z∗p and computes

C∗2 = sk
s
xi

i = G
sε
γ+xi = g

f (γ)sε
γ+xi =

∏l−1

k=0
gdkγ

k sε,

due to (γ+ xi)| f (γ) is a computational polynomial

with l−1 degrees.B invokes PolesAggr(pk,V) to

produce HV = Hε
∏

IDi∈V
1
γ+xi and uses the isomor-
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phism ϕ to compute

C∗3 = (HV)λ = ϕ[(gd0gd1γ · · · gdl−mγ
l−m

)ελ]

= ϕ(
∏l−m

k=0
gdkγ

kε).

Moreover, both c∗ and R̄ are obtained by running

the hash2-queries process. Always, B can outputs

the random value μ∗ ∈ Z∗p. Then, B simulates

the signing algorithm Signpk,ski
(M,V) to obtain a

signature σ ← (C∗1,C
∗
2,C

∗
3, c
∗, μ∗) and returns the

signature σ toA.

Forgery After the learning process, A returns a forgery

(M∗, σ∗) such that σ∗ is a valid signature, where the

signer ID∗ � U .

Verify A sends a valid pair (M∗, σ∗) to B. If

Verifypk,sk j
(M∗, σ∗,V) = 1,A wins the game.

Now we analyze the validate of B as follows. Firstly, ac-

cording to R = e(G,H)ε, C∗1 = Hλ and V∗ ⊆ U , it in-

vokes PolesAggr(pk,V∗) to produces HV∗ = Hε
∏

IDi∈V∗
1

(γ+xi) .

If ID j ∈ V∗ and V∗− = V∗ \ {ID j}, then it invokes Ze-
rosAggr(pk,V∗−) to produces GV∗− = Gγ

∏
IDi∈V∗− (γ+xi), we have

the following equation holds, that is,

Rλ

e(GV∗− ,C
∗
3)
=

Rλ

e(GV∗− , (HV∗)λ)
= e(G,H)λε/e(G,H)

γελ 1
γ+x j

= e(G,H)
ελ

x j
γ+x j = e(sk j,H

λ) = e(sk j,C
∗
1). (3)

It demonstrates sk j = G
x jε

γ+x j is a valid secret key of ID j.

If the challenge signature (M∗, δ∗) is valid, it will pass the

verification algorithm process. That is, according to the hash2

query c∗ = hash2(C∗1,C
∗
2,C

∗
3,M

∗,V∗, R̄), the step 2) of Verify
algorithm will be successful. Next, considering the step 1) of

Verify, we have

R̄ =
(
e(sk j,C

∗
1) · e(GV∗− ,C

∗
3)
)μ∗ · e(C∗2, (H

′ · Hxi)c∗ )−1

= Rλμ
∗ · e(C∗2, (H

′ · Hxi )c∗)−1.

Therefore, B can determine C∗2 = G
sε
γ+xi , however, B cannot

figure it out since the value s is unknown.

Then, according to the Forking Lemma [31], B com-

putes s by the following process. There exists two proba-

bilistic polynomial time Turing machine A1 and A2. A1

produces a commit σ∗ = (C∗1,C
∗
2,C

∗
3) on the input mes-

sage M∗ that is from A2, then it sends the result to A2.

A2 gives the hash c∗ = hash2(C∗1,C
∗
2,C

∗
3,M

∗,V, R̄) to A1.

At last, A2 receives the response σ′∗ from A1, where σ2

just depends on (M∗, σ∗). The idea here is to think of A1

and A2 as running two times in related executions, then

produces a branching point. The adversary forges twice on

the same message but with different random oracle outputs

c∗, c′∗(that is, with c∗ � c′∗) since both c∗ and c′∗ are cho-

sen randomly, then the adversary obtains two good forgeries

μ∗, μ′∗. In our DVSS scheme, B can achieve two valid sig-

natures (C∗1,C
∗
2,C

∗
3, c
∗, μ∗) and (C∗1,C

∗
2,C

∗
3, c
′∗, μ′∗) such that

μ∗ = c∗s/λ + 1/s (mod p), and μ′∗ = c′∗s/λ + 1/s (mod p).

Since we can get c∗, c′∗ from the different oracle query, we

can always find c∗, c′∗ such that gcd(c∗ − c′∗, p) = 1. There-

fore, we have s = (μ∗ − μ′∗)(c∗ − c′∗)−1λ (mod p). Thus, B
obtains the pair 〈xi,C∗2〉 = 〈xi,G

sε
γ+xi 〉.

Finally, B begins to solve the q-SDH problem. Since ID∗ �
U , we have (γ + xi) � f (γ), then we obtain the polynomial

f (γ) =
∑l

i=0
aiγ

i = (
∑l−1

i=0
a′iγ

i)(γ + xi) + rc (mod p),

where, a′i and rc can be computed from {x1, x2, . . . , xl}.
Therefore, B converts 〈xi,G

sε
γ+xi 〉 into the presentation of

〈ζ, g 1
γ+ζ 〉(ζ ∈ Z∗p) as follows. Let ζ = xi. And the equation

C∗2 = G
sε
γ+xi = g

sε
γ+xi
· f (γ)
= gεs·(

∑l−2
i=0 a′iγ

i+
rc
γ+xi

)
= (
∏l−2

i=0 gγ
ia′i )εs ·

gεs
rc
γ+ζ holds. Therefore, B computes

g
1
γ+ζ = (C∗2)

1
εsrc /(
∏l−2

i=0
(gγ

i
)a′i )rc .

B outputs 〈ζ, g 1
γ+ζ 〉, that is, B has the non-negligible advan-

tage ε in solving the q-SDH problem in time t′, which con-

tradicts with q-SDH assumption. The claimed bound t �
t′ − O(q2) is obvious by the construction of the algorithm B.

Therefore, we complete the proof.

Appendix B. Proof of Theorem 4

Proof. Suppose an adversary A can break our scheme with

the advantage AdvEx-CMA
DVSS,A (n, t), then there exists a polynomi-

cal time algorithm B which solves the (n, t)-GDHE problem

by using the advantage of A. A randomly chooses a chal-

lenge subset Q ⊂ U such that R = U \ Q, and sends them to

B. The full proof is presented as follows.

Setup The algorithm takes as input a challenge set Q =
{IDi}n−t

i=1 ⊂ U and an (n, t)-GDHE instance, where |Q| =
n − t. From the instance, γ, λ and ε are unknown, but

random integers xi, ai ∈ Z∗p in f (x) and x′i , bi ∈ Z∗p
in g(x) are known. Besides, any pairwise (xi, x′i) are

not equal to each other. Set G = Ĝ f (γ) (unknown) and

H = Ĥ f (γ)g(γ). And, we compute H,R,Gk from the

(n, t)-GDHE instance. Above all, it outputs a part of
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the public parameter pk,

pk =

⎧
⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

H = Ĥ f (γ)g(γ),

R = e(G,H)ε = e(Ĝ, Ĥ)ε f 2(γ)g(γ),

Gk = Gγ
k
= Ĝγ

k f (γ), k = [1,m].

(4)

Then, B sends the pk = {H,R, {Gk}mk=1} to theA.

Learning The algorithm defines R = {IDi}ti=1, which indi-

cates at most t corrupted users. The types of queries are

described as follows.

1) PrivateKey-Queries (IDi ∈ R). B randomly

chooses an user IDi ∈ R, computes xi =

hash1(IDi). For i ∈ [1, t], B defines the polynomi-

als fi(X) = f (X)
X+xi
=
∏t

k=1,k�i(X + xk) =
∑t−1

k=0 a′kXk,

and fi(X)g(X) =
∑n−1

k=0 b′kXk, where a′k and b′k
are known integers. Based on the known values

(Ĝε, Ĝγε, . . . , Ĝγ
t−1ε), B generates the private key

of the corrupted users as ski = G
xiε
γ+xi = Ĝxiε fi(γ) =

Ĝxiε
∑t−1

k=0 a′kγ
k
=
∏t−1

k=0(Ĝγ
kε)a′k xi . Furthermore, B

uses the known values (Ĥε, Ĥγε, . . . , Ĥγ
nε) to

compute Hi = H
ε
γ+xi = Ĥε fi(γ)g(γ) =

∏n−1
k=0(Ĥγ

kε)b′k .

Finally, B sends ski and ppi = (IDi,Hi) toA.

2) PublicLabel-Queries (IDi � R). B chooses ran-

domly a user IDi � R, then B replies x′i =
hash1(IDi) without the private key. For i ∈ [1, n −
t], B defines the polynomials gi(X) = g(X)

X+x′i
=

∏n−t
k=1,k�i(X + x′k) =

∑n−t−1
k=0 dkXk, f (X)gi(X) =

∑n−1
k=0 d′kXk, where dk and d′k are known integers.

By using the above-mentioned approach, B com-

putes Hi = H
ε
γ+x′i = Ĥε f (γ)gi(γ) =

∏n−1
k=0(Ĥγ

kε)d′k

in terms of (Ĥε, Ĥγε, . . . , Ĥγ
nε). Finally, B sends

ppi = (IDi,Hi) toA.

3) hash2-Queries. WhenA queries the hash value on

(C1,C2,C3,M,V, R̄), B directly outputs c if this

query has already existed. Otherwise, B sends a

random value c ∈ Z∗p to A as the hash value, and

stores the result c and (C1,C2,C3,M,V, R̄).

4) Signing-Queries. A queries a signature on the

message Mi for a signer IDi∗ and the set of desig-

nated verifiers V . B generates the signature σi =

S ignpk,ski∗ (Mi,V) and V ⊂ Q. Finally, the chal-

lenger returns the pair (Mi, σi) toA.

Challenge After learning, A returns two messages M∗0 and

M∗1, as well as a verifier-set V∗ ⊂ Q. B flips a ran-

dom coin b ← {0, 1}, and chooses λ ∈ Z∗p from the

(n, t)-GDHE instance to compute C∗1 = Hλ = Ĥλ f (γ)g(γ).

Next, in terms of the private key ski∗ of the corrupted

users (as the PrivateKey-Queries (IDi∗ ∈ R) described),

B chooses a random value s ∈ Z∗p and computes

C∗2 = sk
s

xi∗
i∗ = (Ĝxiε

∑t−1
k=0 a′kγ

k
)

s
xi∗ =

∏t−1

k=0
(Ĝγ

kε)a′k s.

Furthermore, B invokes PolesAggr(pk,V∗) to pro-

duce HV∗ = H
ε
∏

ID j∈V∗
1
γ+x j , and computes C∗3 =

(HV∗)λ = Ĥ
ελ f (γ)· g(γ)∏

ID j∈V∗ γ+x j = Ĥελ f (γ)·∏ID j∈Q\V∗ γ+x j . Then,

B chooses two random integer c∗, μ∗ ∈ Z∗p, and simu-

lates the algorithm Signpk,ski∗ (M∗b,V
∗) to obtain a sig-

nature σ∗ ← (C∗1,C
∗
2,C

∗
3, c
∗, μ∗). Finally, B sends

(M∗0,M
∗
1, σ

∗) toA.

hash2-Queries. When A queries the hash value on

(C1,C2,C3,M,V, R̄), B directly outputs c if this query

has already existed. Otherwise, B outputs c∗ ←
hash2(C1,C2,C3,M,V, R̄) if the query satisfies the con-

ditions: C1 = C∗1, C2 = C∗2, C3 = C∗3, M = M∗b, V = V∗,
and R̄ = T μ

∗ · e(C∗2, (H
′ · Hxi∗ )c∗)−1. B sends a random

value c∗ ∈ Z∗p toA as the hash value, and stores them.

Guess A returns a guess b∗ ∈ {0, 1} toB. If b∗ = b,B outputs

1 (True), otherwise, it outputs 0 (False).

Now we analyze the validate of B as follows. First of

all, if the given value T is valid, the challenge signature

(M∗b, δ
∗) will be valid. According to GV∗− = Ĝγ f (γ)

∏
IDi∈V∗− (γ+xi),

V∗− = V∗ \ {ID j} and ID j ∈ V∗ ⊆ Q, we have the relation

e(GV∗− ,C
∗
3) = e(Ĝγ f (γ)

∏
IDi∈V∗− (γ+xi), Ĥ

ελ f (γ)· g(γ)∏
IDi∈V∗ γ+xi )

= e(Ĝ, Ĥ)
γελ f 2(γ)g(γ)

γ+x j .

If T is valid, we have T = e(Ĝ, Ĥ)λε f 2(γ)g(γ) and C∗1 =
Ĥλ f (γ)g(γ), such that the following equation holds, i.e.,

T
e(GV∗− ,C

∗
3)
= e(Ĝ, Ĥ)λε f 2(γ)g(γ)/e(Ĝ, Ĥ)

γελ f 2(γ)g(γ)
γ+x j

= e(Ĝ, Ĥ)
ελ f 2(γ)g(γ)

x j
γ+x j = e(sk j, Ĥ

λ f (γ)g(γ))

= e(sk j,C
∗
1). (5)

This means that sk j = Ĝ
ε f (γ)

x j
γ+x j = G

x jε

γ+x j is a valid secret key

of ID j. However, this value could be computed from GDHE

problem because of ID j � R and (γ + x j) � | f (γ). In terms of

Eq. (5), we know that the equation

T = e(Ĝ, Ĥ)λε f 2(γ)g(γ) = e(Ĝλ f (γ), Ĥε f (γ)g(γ))

= e(sk j,C
∗
1) · e(GV∗− ,C

∗
3),

holds if the given value T is valid.

Next, considering the step 1) of Verify algorithm, we have
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R̄ =
(
e(sk j,C

∗
1) · e(GV∗− ,C

∗
3)
)μ∗ · e(C∗2, (H

′ · Hxi)c∗ )−1

= T μ
∗ · e(C∗2, (H

′ · Hxi)c∗)−1.

Further, according to the hash2-queries c∗ ←
hash2(C∗1,C

∗
2,C

∗
3,M

∗
b,V

∗, R̄) after Challenge, the step 2) of

Verify algorithm will be successful, that is, the challenge

signature (M∗b, δ
∗) will be valid.

Secondly, we analyze the advantage of the simulator B.

Considering that b is chosen randomly, we have Pr[b = 1] =

Pr[b = 0] = 1
2 and obtain the success probability of B under

the condition Cdt : R̄ = T μ
∗ · e(C∗2, (H

′ · Hxi∗ )c∗)−1 as follows.

Pr[b = A(M∗0,M
∗
1, σ

∗)|Cdt] = Pr[b = b∗|Cdt]

= Pr[b∗ = 1|b = 1 ∧ Cdt] Pr[b = 1]

+ Pr[b∗ = 0|b = 0 ∧ Cdt] Pr[b = 0]

=
1
2

Pr[b∗ = 1|b = 1 ∧ Cdt]

+
1
2

Pr[b∗ = 0|b = 0 ∧ Cdt].

Moreover,A picks a random bit b with 1
2 possibility, such

that Pr[b = b∗|T ] = Pr[b � b∗|T ] = 1
2 . Above all, we have

AdvGDHE,B(n, t) = |Pr[b = b∗|Cdt] − Pr[b = b∗|T ]|
=

∣∣∣∣∣
1
2

Pr[b∗ = 1|b = 1 ∧ Cdt] +
1
2

Pr[b∗ = 0|b = 0 ∧ Cdt] − 1
2

∣∣∣∣∣

=
1
2
|Pr[b∗ = 1|b = 1 ∧ Cdt] − Pr[b∗ = 1|b = 0 ∧ Cdt]| .

In terms of the advantage AdvEx-CMA
DVSS,A (n, t) that A wins this

game, we have the following equation under the precondition

of Cdt.

AdvEx-CMA
DVSS,A (n, t) = |Pr[b∗ = b] − 1/2|

=

∣∣∣∣∣
1
2

(Pr[b∗ = 1|b = 1] + Pr[b∗ = 0|b = 0] − 1)
∣∣∣∣∣

=
1
2
|Pr[b∗ = 1|b = 1] − Pr[b∗ = 1|b = 0]| .

Then, we obtain that the equation AdvGDHE,B(n, t) =

AdvEx-CMA
DVSS,A (n, t) holds. According to Theorem 3, we have

AdvEx-CMA
DVSS,A (n, t) � [q+2(n+t+m+4)+2]2 ·2n

2p . This implies the ad-

versary A solves (n, t)-GDHE problem with non-negligible

probability ε. However, the (n, t)-GDHE problem is hard in S,

the conclusion would contradict with the assumption. There-

fore, we complete the proof, that is, we proof Theorem 4.
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