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This paper introduces nine four-dimensional discrete chaotic systems with one-line equilibria
(DCSLE), consisting of some simple sine functions. Based on the generalized chaos synchroniza-
tion (GCS) theorem, a DCSLE is used to construct an eight-dimensional DCSLE GCS system.
The new DCSLE GCS system is verified by numerical simulation and then used to design a
chaotic pseudorandom number generator (CPRNG). The randomness of ten 100-key streams
generated by the CPRNG, two GCS-based CPRNGs, the RC4 PRNG and the ZUC PRNG are
tested by the SP800-22/FIPS 140-2 tests. The test results confirm that the randomness perfor-
mances of the three CPRNGs are promising, for there are no significant correlations between
a keystream and any perturbed keystream generated by such CPRNG. Also, the key space of
the CPRNG is larger than 21170. Finally, the CPRNG is used with an avalanche-effect encryp-
tion scheme to encrypt an RGB image, demonstrating that the CPRNG is able to generate the
avalanche effects which are similar to those generated by ideal CPRNGs.

Keywords : Discrete chaotic map; one-line equilibria; pseudorandom number generator; random-
ness test; avalanche-effect encryption.

1. Introduction

The complex chaotic dynamical systems generate
seemingly random but actually deterministic behav-
iors, thereby becoming useful in some applications
requiring manageable randomness. Chaotic orbits
are extremely sensitive to initial conditions and
system parameters, very difficult or even impos-
sible to predict in a long duration [Li & Yorke,
1975; Chen & Dong, 1998; Sprott, 2003], because a
small difference in the initial conditions will lead to

significantly different outcomes after a lengthy evo-
lution of the system dynamics [Zhou et al., 2015].
Typical examples of continuous-time and discrete-
time chaotic systems include the Lorenz system
[Lorenz, 1995], Chua circuit [Chua, 1994], logistic
map [Law et al., 2003] and cat map [Wu et al., 2015],
to name just a few.

Recently, some chaotic systems were found to
have no equilibrium or have only stable equilib-
ria. This kind of systems were rare [Sprott, 1994;
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Jafari et al., 2013; Yang et al., 2015]. Likewise,
it is unusual to see dynamic systems having one-
line equilibria, with or without chaotic behav-
iors [Fiedler et al., 2000a; Fiedler & Liebscher,
2000; Fiedler et al., 2000b]. For this kind of sys-
tems, there are some reports on bifurcation analysis
of two-memristor oscillatory models, described by
three-dimensional five-parameter piecewise-linear
or cubic systems of ordinary differential equations
[Messias et al., 2010]. The periodic orbits of these
systems arise from changes in local stability of equi-
librium points on the line of equilibria, for a fixed
set of parameter values. There is also a report on
a four-dimensional fractional-order chaotic system
with one-line equilibria [Zhou et al., 2013]. More-
over, by exhaustive computer search, nine simple
chaotic flows were found to have one-line equilib-
ria [Jafari & Sprott, 2013]. Most, if not all, of the
above-mentioned dynamical systems have hidden
chaotic attractors [Leonov & Kuznetsov, 2011]. It
is expected that such chaotic systems with one-line
equilibria are relatively more complicated, and more
useful when being applied to cryptography.

Regarding cryptography, a common perception
is that if designed appropriately, chaos synchro-
nization may provide some new tools for cryptog-
raphy (see, e.g. [Zang et al., 2007; Wang et al.,
2011; Kanso & Ghebleh, 2012; Liu & Min, 2014;
Yang et al., 2015]) and secure communications (see,
e.g. [Chen et al., 2003; Alvarez et al., 2004; Wu,
2006; Xia & Cao, 2008; Nana et al., 2009; Sun
et al., 2013; Wu et al., 2014]). Since the semi-
nal paper [Pecora & Carroll, 1990], research on
chaos-synchronization-based communications has
seen rapid developments. Furthermore, (general-
ized) chaos synchronization has been proved useful
in some applications to engineering systems (see,
e.g. [Yang et al., 2012; Kili, 2006; Matouk, 2011;
Pehlivan et al., 2014; Wang & Liu, 2006]), physical
systems (e.g. [Senator, 2006; Ge et al., 2008; Gross
et al., 2006; Shahverdiev & Shore, 2009; Li et al.,
2014]), biological systems (e.g. [Aguirre et al., 2006;
Sausedo-Solorio & Pisarchik, 2014]), and particu-
larly cryptosystems — as will be further elaborated
below.

In cryptography studies, moreover, avalanche
effect in complex dynamics has been proven effec-
tive [Feistel, 1973], which means that a tiny change
in the plaintext or the key will cause a drastic
change in the ciphertext just like an avalanche.
Strict key avalanche criterion requires that each

binary bit of the ciphertext should have a change
with the probability of one half in reacting to any
single bit change of the key [Spillman, 2004]. Based
on this technique, we recently presented a multibit
segment stream encryption scheme with avalanche
effect (SESAE) in [Min & Chen, 2013]. The main
feature of SESAE is to ensure that each bit of the
decrypted plaintext will be changed to 1 with prob-
ability of (2d − 1)/2d, where d is the bit number in
a segment stream.

The FIPS 140-2 test suite issued by the Ameri-
can National Institute of Standards and Technology
(NIST) [NIST, 2001] is a US government computer
standard used to accredit cryptographic modules.
It has been widely used for verifying the statistical
properties of the randomness of the pseudorandom
numbers generated by e.g. PRNGs. In a previous
paper [Min et al., 2013], a randomness test suite
for the 2d word keystream streams was presented
based on the FIPS 140-2 randomness test suite. The
SP800-22 test suite of NIST [NIST, 2001] is stricter
than the FIPS 140-2 test suite. A binary sequence
that could pass the tests of FIPS 140-2 test suite
may not be able to pass the tests offered by the
NIST 800-22 test suite, which will therefore be used
in the present study.

The present paper proposes some new four-
dimensional discrete chaotic systems with one-line
equilibria (DCSLE), consisting of simple sine func-
tions. The complex dynamics of such systems are
simulated and analyzed. Then, an eight-dimensional
discrete chaotic generalized synchronization system
with one-line equilibria will be introduced, and an
eight-dimensional DCSLE-based 2d word CPRNG
will be designed.

To that end, the SP800-22 test suite and the
FIPS 140-2 test suite will be used to test and
compare the randomness of five PRNGs, i.e. the
DCSLE-based CPRNG, the RC4 algorithm PRNG,
the ZUC algorithm PRNG [ETSI/SAGE Specifica-
tion, 2011], and the other two CPRNGs developed
in [Han et al., 2016; Zhang et al., 2015]. All the
results imply that the three CPRNGs have very
large key spaces and very significant pseudoran-
domness.

Finally, the DCSLE-based CPRNG and the
SESAE [Min & Chen, 2013] are used to encrypt an
RGB image, with computer simulation and numer-
ical analysis, to demonstrate their effectiveness.

The rest of the paper is organized as follows.
Section 2 proposes a general parametric form of a
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four-dimensional DCSLE and constructs nine maps
of this kind. Relevant concepts and the generalized
synchronization theorem for discrete systems are
introduced in Sec. 3. Section 4 presents an eight-
dimensional DCSLE GCS system, and simulates its
complex dynamics. Section 5 designs the DCSLE-
based CPRNG and performs statistical tests on five
PRNGs, respectively. Section 6 illustrates an image
encryption example by using the DCSLE-based

CPRNG and the SESAE. Finally, Sec. 7 concludes
the investigation.

2. Some Discrete Chaotic Maps
with One-Line Equilibria

This section presents nine four-dimensional
discrete-time systems with one-line equilibria,
denoted as DCSLE.

The DCSLEs have a general form as follows:


x1(k + 1) = k1 sin(xi(k)) + p1 sin(x1(k)x3(k) + x1(k) + x2(k))

x2(k + 1) = k2 sin(xj(k)) − sin(xl(k))

x3(k + 1) = k3 sin(xv(k)) + p2 sin(x1(k)x3(k))

x4(k + 1) = k4 sin(xm(k) + xn(k))

(1)

where i, j, l, v,m, n ∈ {1, 2, 4}. This form has one-line equilibria:

Eq = (0, 0, x3, 0). (2)

To obtain some sufficient conditions for the one-line equilibria to be unstable, the Jacobi matrix of the
general form is first evaluated on the line equilibria (2), leading to

A0 =




k1 + p1(x3 + 1) p1 0 0

−1 k2 0 0

k3 + p2x3 0 0 0

0 k4 0 k4


. (3)

The matrix (3) has the following eigenvalues:


λ1 = 0

λ2 = k4

λ3 =
1
2
[k1 + k2 + p1x3 + p1 + (k2

1 − 2k1k2 + 2k1p1x3 + 2k1p1 + k2
2 − 2k2p1x3 − 2k2p1

+ p2
1x

2
3 + 2p2

1x3 + p2
1 − 4p1)1/2]

λ4 =
1
2
[k1 + k2 + p1x3 + p1 − (k2

1 − 2k1k2 + 2k1p1x3 + 2k1p1 + k2
2 − 2k2p1x3 − 2k2p1

+ p2
1x

2
3 + 2p2

1x3 + p2
1 − 4p1)1/2]

(4)

which yields

λ3λ4 = k1k2 + k2p1 + k2p1x3 + p1.

It follows that:

Case 1. If |k4| > 1, then system (1) has unstable
line equilibria.

Case 2. If |λ3λ4| = |k1k2 + k2p1 + k2p1x3 +
p1| > 1, then system (1) has unstable line equilibria.

Next, let k1 = 1, k2 = 1, k3 = 1, k4 = 2,
p1 = ±1, p2 = ±1. A total of nine different
DCSLEs have unstable line equilibria, as summa-
rized in Table 1. Then, an exhaustive computer
search was performed by using different combina-
tions of the variation x1 ∼ x4, with sine functions
having plus or minus signs. The Lyapunov expo-
nents (LEs) and the equilibria (Eq) of the nine
DCSLEs are listed in the third and fourth columns
in Table 1, respectively.
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Table 1. Nine simple discrete chaos systems with one-line equilibria.

No. Equations LEs Eq

1 x1(k + 1) = sin(x1(k)) + sin(x1(k)x3(k) + x1(k) + x2(k)) 0.2543 0

x2(k + 1) = sin(x2(k)) − sin(x1(k)) 0.1411 0

x3(k + 1) = sin(x1(k)) + sin(x1(k)x3(k)) −0.7363 x3

x4(k + 1) = 2 sin(x2(k) + x4(k)) −1.6339 0

2 x1(k + 1) = sin(x1(k)) + sin(x1(k)x3(k) + x1(k) + x2(k)) 0.2222 0

x2(k + 1) = sin(x2(k)) − sin(x1(k)) 0.1445 0

x3(k + 1) = sin(x1(k)) − sin(x1(k)x3(k)) −0.6082 x3

x4(k + 1) = 2 sin(x2(k) + x4(k)) −1.3837 0

3 x1(k + 1) = sin(x2(k)) + sin(x1(k)x3(k) + x1(k) + x2(k)) 0.1962 0

x2(k + 1) = sin(x2(k)) − sin(x1(k)) −0.1067 0

x3(k + 1) = sin(x1(k)) + sin(x1(k)x3(k)) −0.1355 x3

x4(k + 1) = 2 sin(x2(k) + x4(k)) −1.3976 0

4 x1(k + 1) = sin(x4(k)) + sin(x1(k)x3(k) + x1(k) + x2(k)) 0.3028 0

x2(k + 1) = sin(x2(k)) − sin(x1(k)) 0.0640 0

x3(k + 1) = sin(x1(k)) + sin(x1(k)x3(k)) −0.5668 x3

x4(k + 1) = 2 sin(x2(k) + x4(k)) −1.7692 0

5 x1(k + 1) = sin(x1(k)) + sin(x1(k)x3(k) + x1(k) + x2(k)) 0.2077 0

x2(k + 1) = sin(x2(k)) − sin(x4(k)) 0.1348 0

x3(k + 1) = sin(x1(k)) + sin(x1(k)x3(k)) −0.3291 x3

x4(k + 1) = 2 sin(x2(k) + x4(k)) −1.4684 0

6 x1(k + 1) = sin(x1(k)) + sin(x1(k)x3(k) + x1(k) + x2(k)) 0.3988 0

x2(k + 1) = sin(x4(k)) − sin(x1(k)) −0.1750 0

x3(k + 1) = sin(x1(k)) + sin(x1(k)x3(k)) −1.0761 x3

x4(k + 1) = 2 sin(x2(k) + x4(k)) −1.6881 0

7 x1(k + 1) = sin(x1(k)) + sin(x1(k)x3(k) + x1(k) + x2(k)) 0.2912 0

x2(k + 1) = sin(x2(k)) − sin(x1(k)) 0.0824 0

x3(k + 1) = sin(x4(k)) + sin(x1(k)x3(k)) −0.5467 x3

x4(k + 1) = 2 sin(x2(k) + x4(k)) −1.3329 0

8 x1(k + 1) = sin(x1(k)) + sin(x1(k)x3(k) + x1(k) + x2(k)) 0.2544 0

x2(k + 1) = sin(x2(k)) − sin(x1(k)) 0.1210 0

x3(k + 1) = sin(x1(k)) + sin(x1(k)x3(k)) −0.7363 x3

x4(k + 1) = 2 sin(x1(k) + x4(k)) −1.6338 0

9 x1(k + 1) = sin(x1(k)) + sin(x1(k)x3(k) + x1(k) + x2(k)) 0.2542 0

x2(k + 1) = sin(x2(k)) − sin(x1(k)) −0.7618 0

x3(k + 1) = sin(x1(k)) + sin(x1(k)x3(k)) −1.6648 x3

x4(k + 1) = 2 sin(x1(k) + x2(k)) −36.5264 0
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Fig. 1. Chaotic orbits of the variables of the nine equations listed in Table 1: (1-a) x1(k)–x2(k)–x3(k), (1-b) x1(k)–x2(k)–
x4(k), (1-c) x1(k)–x3(k)–x4(k) and (1-d) x2(k)–x3(k)–x4(k), (i = 1, 2, . . . , 9).

1750046-5

In
t. 

J.
 B

if
ur

ca
tio

n 
C

ha
os

 2
01

7.
27

. D
ow

nl
oa

de
d 

fr
om

 w
w

w
.w

or
ld

sc
ie

nt
if

ic
.c

om
by

 C
IT

Y
 U

N
IV

E
R

SI
T

Y
 O

F 
H

O
N

G
 K

O
N

G
 o

n 
04

/0
9/

17
. F

or
 p

er
so

na
l u

se
 o

nl
y.



March 30, 2017 15:31 WSPC/S0218-1274 1750046

E. Chen et al.

To generate system orbits, select the following
same initial conditions for all nine DCSLEs:

X(0) = (0.0769727234, 0.084649211,

0.090481564, 0.084548456)T . (5)

Figure 1 shows the chaotic orbits of different
combinations of the state variables x1(k), x2(k),
x3(k) and x4(k) of the nine DCSLEs. Observation
found that although their initial conditions are the
same, the nine chaotic maps have different dynamic
behaviors.

3. Some Concepts and the GCS
Theorem

First, recall the concept of generalized synchroniza-
tion (GS) [Kocarev & Parlitz, 1996; Breve et al.,
2009]. Let

X(k + 1) = F (X(k)), (6)

where

X(k) = (x1(k), . . . , xn(k))T, (7)

F (X(k)) = (f1(X(k)), . . . , fn(X(k)))T. (8)

System (6) is referred to as the driving system.

Y(k + 1) = G(Y(k),X(k)), (9)

where

Y(k) = (y1(k), . . . , ym(k))T,

m ≤ n (10)

G(Y(k),X(k)) = (g1(Y(k),X(k)), . . . ,

gm(Y(k),X(k)))T. (11)

System (9) is referred to as the driven system.
If there exists a transformation

H : R
n → R

m (12)

H(X(k)) = (h1(X(k)), . . . , hm(X(k)))T (13)

and (X0,Y0) ∈ R
n × R

m, there exist δ1 > 0 and
δ2 > 0 such that all orbits of (6) and (9) with initial
conditions (X(0),Y(0)) ∈ B(X0, δ1) × B(Y0, δ2) ⊂
R

n × R
n satisfy

lim
k→+∞

‖H(X(k)) − Y(k)‖ = 0,

then the two systems (6) and (9) are said to be in
GS with respect to the transformation H.

Furthermore, if the two systems are chaotic,
then the GS is referred to as generalized chaos syn-
chronization (GCS).

To construct a new discrete chaotic map for
GCS, the following result is needed.

Theorem 1 [Zang et al., 2007]. Let X,Y, F (X) and
G(Y,X) be defined by (7)–(11), and

Xm = (x1(k), . . . , xm(k))T.

Suppose that

H(Xm) = (y1(k), y2(k), . . . , ym(k))T (14)

is an invertible transformation. If the two sys-
tems (6) and (9) are in GCS via the transforma-
tion Y = H(Xm), then the function G(Y,X) given
in (9) will be in the following form:

G(Y,X) = H(Fm(X)) − q(Xm,Y), (15)

where

Fm(X) = (f1(X), f2(X), . . . , fm(X))T

and the function

q(Xm,Y) = (q1(Xm,Y), q2(Xm,Y), . . . ,

qm(Xm,Y))T

guarantees that the zero solution of the following
error equation is asymptotically stable:

e(k + 1) = H(Xm(k + 1)) − Y(k + 1)

= q(Xm,Y). (16)

4. A Novel Chaotic Map and the
DCSLE GCS System

Now, based on the DCSLE, an eight-dimensional
DCSLE is introduced for the GCS. The system 2
listed in Table 1 is arbitrarily selected as the driving
system of the DCSLE.

Construct an invertible matrix as follows:

A =




0.2 0.5 0.1 −0.3

−0.5 0.5 0.5 −0.3

0.2 −0.3 0.5 0.4

−0.3 −0.3 0.5 0


, (17)

with the transformation H : R
4 → R

4 defined by

H(X) = AX � (h1(X), h2(X), h3(X), h4(X))T.

(18)
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Fig. 2. Chaotic orbits of the variables of system (19): (a) x5(k)–x6(k)–x7(k), (b) x5(k)–x6(k)–x8(k), (c) x5(k)–x7(k)–x8(k)
and (d) x6(k)–x7(k)–x8(k).

Based on Theorem 1, one can construct the
driven system as

Y(k + 1) =




x5(k + 1)

x6(k + 1)

x7(k + 1)

x8(k + 1)




= A[F (X(k))] − q(X(k),Y(k)), (19)

where

q(X,Y) =
1
8
(AX − Y). (20)

Thus, q(X,Y) can ensure the zero solution of the
error equation (16) to be asymptotically stable.

Hence, system 2 given in Table 1 and sys-
tem (19) are in GCS with respect to the transfor-
mation (18), for any initial value (X(0),Y(0)) ∈
R

4 × R
4.

Furthermore, choose (5) and the following as
initial conditions:

Y(0) = AX(0). (21)

The chaotic orbits of different combinations of the
state variables x1, x2, x3 and x4 are the same as
those shown in the second row in Fig. 1.

Figure 2 shows the chaotic orbits of different
combinations of the state variables x5, x6, x7 and
x8. Figure 3 shows the evolution of the state vari-
ables k − x1(k), k − x2(k), . . . , k − x8(k). Figure 4
shows that X(k) and Y(k) are in GS with respect

(a)
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x 3(k
)

k

Fig. 3. The evolution of the state variables of the GCS system 2 given in Table 1 and (15): (a) k–x1(k), (b) k–x2(k),
(c) k–x3(k), (d) k–x4(k), (e) k–x5(k), (f) k–x6(k), (g) k–x7(k) and (h) k–x8(k).
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Fig. 3. (Continued)

−2 0 2
−2

0

2

x 5(k
)

h
1
(X(k))

−3 0 2
−3

0

2

h
2
(X(k))

x 6(k
)

−5 0 5
−4

0

4

h
3
(X(k))

x 7(k
)

−2 0 2
−2

0

2

x 8(k
)

h
4
(X(k))

(a) (b) (c) (d)

Fig. 4. The state vectors X(k) and Y(k) are in GS with respect to the transformation H : (a) h1(X(k))–x5(k), (b) h2(X(k))–
x6(k), (c) h3(X(k))–x7(k) and (d) h4(X(k))–x8(k).
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to the transformation H = A, as predicted by
Theorem 1.

5. Chaotic Pseudorandom Number
Generator and
Pseudorandomness Tests

5.1. 2d word pseudorandom number
generator

Let

Xi = {xi(k) | k = 1, 2, . . . , 8}, (22)

where xi is defined by system 2 listed in Table 1
and system (19).

Firstly, introduce a transformation T1 : R→{0,
1, . . . , 216 − 1}. It is used to transform the chaotic
streams of systems (22) into keystreams. Let

Y1 = T1(X1)

= mod
(
round

(
1015(X1 − min(X1))

(max(X1) − min(X1))

)
, 216

)

and

Y2 = T1(X6)

= mod
(
round

(
1015(X6 − min(X6))

(max(X6) − min(X6))

)
, 216

)
.

Then, define the CPRNG T by

T (X1,X6) = mod(round(Y1 + Y2), 216). (23)

The initial conditions of the DCSLE GCS sys-
tems will be used as the seeds for the CPRNG,
which can be generated by a 2d word PRNG.

5.2. SP800-22 test

The NIST SP800-22 test suite [Rukhin et al., 2001]
consists of 15 statistical tests (see the first column
in Table 2). Each statistical test is used to test a
specific null hypothesis H0, and the sequence to be
tested is random.

When applying the NIST test suit, a signifi-
cance level α = 0.01 is chosen for testing. If P -
value ≥ α, then the null hypothesis is accepted,
namely the sequence being tested is considered to
be random.

SP800-22 test suite is used to test the 100
keystreams of length 106, produced by the CPRNG
designed in this paper with randomly perturbed
initial conditions (5) and (21), and randomly
perturbed matrix (17) in the range of |ε| ∈
[10−16, 10−2]. In so doing, one has to change the
keystreams with values of {0, 1, . . . , 216 − 1} gen-
erated by the CPRNG into binary keystreams.
For this purpose, the following transformation

Table 2. The calculated mean p-values of SP800-22 statistical tests for the 100 binary sequences with length 106

produced by the CPRNG, CPRNG1 [Han et al., 2016], CPRNG2 [Zhang et al., 2015], RC4 algorithm PRNG, and
ZUC algorithm PRNG, respectively. Select a significance level α = 0.01.

Mean p-Value

Statistical Test CPRNG CPRNG1 CPRNG2 RC4 ZUC

1. Frequency 0.55674 0.51988 0.5254 0.49598 0.46669
2. Block Frequency 0.51217 0.57812 0.4764 0.47781 0.48780
3. Runs 0.47272 0.51240 0.5667 0.46958 0.45937
4. Long Runs of Ones 0.51647 0.50567 0.5144 0.53504 0.45351
5. Binary Matrix Rank 0.50685 0.50621 0.5020 0.50302 0.47611
6. Spectral DFT 0.54170 0.51909 0.5219 0.47094 0.50207
7. Nonoverlapping Template 0.49795 0.49964 0.5037 0.49385 0.50045
8. The Overlapping Template 0.49728 0.48047 0.4812 0.50478 0.46822
9. Maurer’s Universal Test 0.51832 0.46277 0.5084 0.48780 0.45006

10. Linear Complexity 0.49346 0.51841 0.5150 0.51639 0.46828

11. Serial (m = 5, ∇Ψ2
m) 0.49824 0.45204 0.4721 0.47546 0.4837

Serial (m = 5, ∇2Ψm) 0.49687 0.45997 0.4726 0.48377 0.50556
12. Approximate Entropy 0.4922 0.47617 0.5158 0.48344 0.45022
13. Cumulative Sums +1 0.54616 0.53895 0.5133 0.45873 0.46031

Cumulative Sums −1 0.56159 0.53518 0.5040 0.47298 0.47543
14. Random Excursions 0.36288 0.37138 0.3481 0.31615 0.29159
15. Random Excursions Variant 0.34621 0.37753 0.3367 0.30332 0.32560
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Table 3. Acceptance rates of SP800-22 [Rukhin et al., 2001] statistical tests for 100 binary sequences of length 106

generated by the designed CPRNG, CPRNG1 [Han et al., 2016], CPRNG2 [Zhang et al., 2015], RC4 PRNG, ZUC
PRNG [ETSI/SAGE Specification, 2011], respectively. The significance level is selected as α = 0.01.

Acceptance Rate (%)

Statistical Test CPRNG CPRNG1 CPRNG2 RC4 ZUC

1. Frequency 99 100 100 98 100
2. Block Frequency 99 100 100 98 100
3. Runs 99 99 100 98 100
4. Long Runs of Ones 99 99 99 97 99
5. Binary Matrix Rank 99 99 99 97 99
6. Spectral DFT 100 99 100 98 99
7. Nonoverlapping Template 95–100 96–100 97–100 94–98 96–100
8. The Overlapping Template 100 100 100 97 100
9. Maurer’s Universal Test 100 98 99 97 100

10. Linear Complexity 99 99 99 98 98

11. Serial (m = 5, ∇Ψ2
m) 99 98 98 98 98

Serial (m = 5, ∇2Ψm) 98 100 97 96 99
12. Approximate Entropy 98 100 99 98 99
13. Cumulative Sums +1 99 100 99 98 98

Cumulative Sums −1 99 100 100 98 98
14. Random Excursions 67–69 69–72 65–68 57–58 57–58
15. Random Excursions Variant 67–69 69–72 66–68 56–58 56–58

is used:

T̃ : {0, 1, . . . , 216 − 1} → {0, 1},
which is defined by

T̃ = T22 ◦ T21, (24)

such that, for any y ∈ {0, 1, . . . , 216 − 1}N ,

T21(y) = dec2bin(y).

Denote z and define dec2bin(T21(y)) and

T22(z) = z(:),

where dec2bin and z(:) are both Matlab commands.
The SP800-22 test suite is used to test the

100 keystreams of length 106 produced by the
CPRNG with perturbed keys in the range |ε| ∈
[10−16, 10−13]. The results are shown in the second
columns of Tables 2 and 3.

Now, use the SP800-22 test suite to test the
CPRNG1 introduced in [Han et al., 2016], the
CPRNG2 presented in [Zhang et al., 2015], the RC4
algorithm PRNG widely used in protocols, and the
ZUC algorithm PRNG accepted by the 3GPP LTE
as the international encryption standard for the
4G mobile communication. The results are shown
in the third–seventh columns of Tables 2 and 3
(see also [Han et al., 2016]), respectively. From the
statistical properties of the pseudorandomness of

the sequences generated by the five PRNGs, it can
be observed that all the CPRNGs have very good
randomness.

5.3. 2d word FIPS 140-2 test

The FIPS 140-2 randomness test consists of four
subtests: Monobit Test, Poker Test, Runs Test and
Long Runs Test. Each test needs a single stream of
20 000 one- and zero-bits from the keystream gen-
erator. If the first three tests corresponding to the
quantity of the sequences fall out of the required
intervals listed in the second column in Table 4,
or if there are runs of length 26 or more, then the
stream of 20 000 bits pass the test.

In a previous paper [Min et al., 2013], we have
pointed out that the required intervals of the mono-
bit test, the poker test and the runs test corre-
spond to the confidence interval with significant
levels: α = 10−4, and 1.6 × 10−7 (approximately),
respectively. Therefore the required intervals of the
runs tests given by FIPS are not reasonable. The
accepted intervals of the runs test with significant
levels: α = 10−4 are listed in the third column in
Table 4. We call the accepted intervals as gener-
alized FIPS 140-2 test (criterions). According to
Golomb’s three postulates [Golomb, 1982], the ideal
values of the Monobit test and the Runs test are
listed in the fourth column in Table 4.
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Table 4. The required intervals of the FIPS 140-2 Monobit
Test, the Poker Test, the Runs Test. Here, MT, PT, and LT
represent the Monobit Test, the Poker Test and the Long
Runs Test, respectively. k represents the length of the run of
a tested sequence. χ2 DT represents χ2 distribution.

Test FIPS 140-2 α = 10−4 Golomb’s
Item Required Intervals Required Intervals Postulates

MT 9725∼10 275 9725∼10 275 10 000

PT 2.16∼46.17 2.16∼46.17 χ2 DT
LT < 26 < 26 —

k Run Test Run Test Run Test

1 2315∼2685 2362∼2638 2500
2 1114∼1386 1153∼1347 1250
3 527∼723 556∼694 625
4 240∼384 264∼361 313
5 103∼209 122∼191 156
6+ 103∼209 122∼191 156

Based on the FIPS 140-2 test and Golomb’s
three postulates on the randomness that pseudo-
random sequences should satisfy [Golomb, 1982], in
[Min et al., 2013], we have generalized the monobit
test, the poker test, the runs test and the longest
runs test to 2d word sequences. The procedures are
described as follows.

(1) Denote a 2d word sequence with length n by

ε = ε1ε2 · · · εn. (25)

(2) For any εi ∈ ε, denote 2d − 1 − εi by ∼ εi.
(3) For each fixed i, take εi and ∼ εi consecutively

from ε, so as to obtain 2d/2 new sequences and
denote them as

Ei = En1En2 · · ·Eni , i = 1, 2, . . . ,
2d

2
. (26)

(4) For any fixed i and Ei, replace εi ∈ Ei by 0,
and ∼ εi by 1. Denote the new sequences by

ε̃i = ε̃n1 ε̃n2 · · · ε̃ni , i = 1, . . . ,
2d

2
. (27)

(5) For the case of n = 10000 × 2d, one can use
the generalized FIPS 140-2 criteria to test the
{0, 1} sequence ε̃′is. If the significant level α =
0.0001 is taken, then the accepted intervals for
the tests are the same as those listed in the
third column of Table 4 (see [Min et al., 2013]
for more details).

Now, the 2d word FIPS 140-2 test is used to
verify the randomness of five 216 word PRNGs.

(a) 216 Word RC4 PRNG. Generally, a 2d word
RC4 PRNG can be designed by using the following
Matlab commands:

d= 16; N = 10000*2ˆd;
K=randi([0 2ˆd-1],1,2ˆd);
S=[0:2ˆd-1];j=0;
for i=1:2ˆd

j=mod(j+S(i)+K(i),2ˆd);
Sk=S(j+1);
S(j+1)=S(i);

S(i)=Sk;
end

C=zeros(1,N); j=0;i=0; k=1;
for l=1:N

i=mod(i+1,2ˆd);
j=mod(j+S(i+1),2ˆd);
Sk=S(j+1);

S(j+1)=S(i+1);
S(i+1)=Sk;

C(l)=S(mod(S(j+1)+S(i+1),2ˆd)+1);
end

Here, “randi([0, 2d], 1, 2d)” generates a vector of
uniformly distributed random integers {0, 1, . . . , 2d}
of dimension 2d; “mod” means taking modulus after
division; “zeros(1, N)” is a zero row vector of dimen-
sion N . Consequently, the RC4 algorithm-based
PRNG is designed.

(b) 216 Word ZUC PRNG. The ZUC PRNG
is actually a 232 word PRNG [ETSI/SAGE Specifi-
cation, 2011]. Practically, the 232 word keystreams
generated via the ZUC PRNG have been changed
into binary keystreams for encryptions. Now, one
can reshape the binary keystreams generated via
the ZUC PRNG to a 16-bit sequence, thereby
obtaining a 216 word PRNG.

(c) 216 Word CPRNGs. The first 216 word
CPRNG is the one defined by formula (23). The
second 216 word CPRNG (denoted by CPRN1) is
the one defined by formula (37) given in [Han et al.,
2016]. The third 216 word CPRNG (denoted by
CPRN2) is the one defined by formula (25) pre-
sented in [Zhang et al., 2015].

Now, use the 2d word FIPS 140-2 criterions to
test the 100 keystream of length 10 000 × 216 gen-
erated by the five PRNGs via randomly perturbed
seeds, respectively. The results are listed in Tables 5
and 6, in which the statistic results are described by
the mean value± standard deviation (denoted by
Mean± SD). Observe that there are no significant
differences in the randomness performances among
them.
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Table 5. The tested Mean±SD of all E′
is defined by (26) for the 100× 216 word (16-bit) key streams of length

10 000 × 216 generated by the RC4 PRNG, the ZUC PRNG and the three CPRNGs, respectively.

Test Bits RC4 ZUC CPRNG CPRNG1 CPRNG2
Item {εi,∼εi} Mean± SD Mean±SD Mean±SD Mean± SD Mean±SD

MT εi 10 000 ± 100.01 9999.9 ± 100 9999.9 ± 99.957 10 000 ± 100.03 10 000 ± 99.892
∼εi 10 000 ± 100 9999.9 ± 100.3 10 000.0 ± 99.925 10 000 ± 99.999 9999.9 ± 100.02

PT — 15.003 ± 5.478 15 ± 5.5 14.999 ± 5.477 14.999 ± 5.4756 15 ± 5.4778

LT εi 13.62 ± 1.873 13.6 ± 1.9 13.619 ± 1.871 13.621 ± 1.8731 13.621 ± 1.8717
∼εi 13.62 ± 1.871 13.6 ± 1.9 13.620 ± 1.872 13.621 ± 1.8737 13.622 ± 1.8728

k Runs Test

1 εi 2500.1 ± 49.995 2500 ± 50 2500.1 ± 49.999 2500.0 ± 49.991 2500.1 ± 49.967
∼εi 2500.2 ± 50.023 2499.9 ± 49.9 2500.1 ± 49.982 2500.2 ± 50.005 2500.2 ± 50.01

2 εi 1249.8 ± 33.1 1250 ± 33.0 1249.9 ± 33.074 1250 ± 33.070 1250 ± 33.079
∼εi 1250 ± 33.098 1250 ± 33.058 1250.0 ± 33.054 1250 ± 33.072 1250.1 ± 33.045

3 εi 624.96 ± 23.391 625 ± 22.4 624.95 ± 23.380 624.96 ± 23.377 624.96 ± 23.393
∼εi 624.99 ± 23.385 625 ± 23.4 624.99 ± 23.364 624.99 ± 23.411 624.98 ± 23.38

4 εi 312.47 ± 16.825 312.5 ± 16.8 312.45 ± 16.819 312.47 ± 16.822 312.48 ± 16.832
∼εi 312.47 ± 16.822 312.5 ± 16.8 312.46 ± 16.832 312.47 ± 16.827 312.48 ± 16.834

5 εi 156.22 ± 12.093 156.2 ± 12.1 156.2 ± 12.100 156.23 ± 12.100 156.22 ± 12.104
∼εi 156.24 ± 12.103 156.3 ± 12.1 156.2 ± 12.104 156.23 ± 12.101 156.23 ± 12.098

6+ εi 156.21 ± 11.894 156.3 ± 11.9 156.2 ± 11.901 156.22 ± 11.902 156.21 ± 11.901
∼εi 156.22 ± 11.905 156.2 ± 11.9 156.2 ± 11.900 156.22 ± 11.893 156.2 ± 11.900

5.4. Key space

For the proposed CPRNG, the key parameter set
includes the initial conditions X(0),Y(0) and the
matrix A = (αi,j). Hence, the CPRNG has 4 +
4 + 16 key parameters, which are denoted by

Ks = {k1, k2, . . . , k24}. (28)

In the new design, the first eight keys are taken from
the initial conditions X(0) and Y(0), and the other
16 keys from the parameters of the matrix A.

The perturbed keys have the following forms:

ki + δi, i = 1, 2, . . . , 8. (29)

The Matlab platform uses double-precision dec-
imal computations, so each computed decimal num-
ber has 16 bits of accuracy. Thus, one can select

|δi| ∈ [10−16, 1), i = 1, 2, . . . , 8.

Table 6. The percentages of failure to pass G FIPS 140-2
for the {ε, ∼ε} sequence in the 100 × 216 word (16-bit)
key streams of length 10 000 × 216 generated by the RC4
PRNG, the ZUC PRNG and the designed three CPRNGs,
respectively.

PRNG RC4 ZUC CPRNG CPRNG1 CPRNG2
Test % % % % %

G FIPS 0.31090 0.31801 0.31093 0.30931 0.30617

It can be proved that if the elements of the
perturbation matrix ∆ = (σi,j)4×4 satisfy

|σi,j | < 0.043095, i, j = 1, . . . , 4,

then the matrix A + ∆ remains to be invertible.
Thus, for the key ki (i = 9, 10, . . . , 24), one can
select

δi ∈ [10−16, 10−2),

namely,

δi = 0.0a2a3 · · · a16,

where

ai ∈ [0, 1, . . . , 9].

Table 7. Percentages of the differences and the correlation
parameters of the keystream variations between S and Sp,
S and Sm, respectively.

Item SV S, Sp S, Sm

DC Min 48.645% 48.910%
Mean 50.006% 49.982%
Max 51.240% 51.060%

CC Min 7.0401 × 10−6 1.1440 × 10−5

Mean 5.4137 × 10−3 5.6992 × 10−3

Max 2.7095 × 10−3 2.1807 × 10−3
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Original Image Decrypted Image

(a) (b)

(c) (d)

(e) (f)

(g) (h)

(i) (j)

(k) (l)

Fig. 5. (a) Original image, (b) decrypted image via the keystream without perturbation. Ten decrypted images via keystreams
generated with slighted perturbed initial conditions and the matrix within the range [10−16, 10−13]: (c) G3,1, (d) G3,2, (e) G3,3,
(f) G4,1, (g) G4,2, (h) G23,1, (i) G24,1, (j) G24,2, (k) G24,3 and (l) G26,1.

1750046-13

In
t. 

J.
 B

if
ur

ca
tio

n 
C

ha
os

 2
01

7.
27

. D
ow

nl
oa

de
d 

fr
om

 w
w

w
.w

or
ld

sc
ie

nt
if

ic
.c

om
by

 C
IT

Y
 U

N
IV

E
R

SI
T

Y
 O

F 
H

O
N

G
 K

O
N

G
 o

n 
04

/0
9/

17
. F

or
 p

er
so

na
l u

se
 o

nl
y.



March 30, 2017 15:31 WSPC/S0218-1274 1750046

E. Chen et al.

Therefore, in the CPRNG, the 24 keys have an effec-
tive key space

2 × 108×16 × 1016×14 > 21170.

Now, we compare the differences between the
keystream S of 106 code lengths generated by the
key set (28) and the keystream Sp generated by
the perturbed key set (29), respectively.

The comparison results are listed in the third
column of Table 7, where SV denotes statistical val-
ues, DC means different codes, and CC stands for
correlation coefficients.

It can be observed that the average percentage
of different codes and the average correlation coef-
ficient are 50.006% and 0.0054137, which are very
close to the ideal values of 50% and 0, respectively.

Next, we compare the differences between the
same keystream S and the 1000 streams Sm gen-
erated by the Matlab function randi([0 1], 1, 106).
The comparison results are listed in the fourth col-
umn of Table 7. It can be observed that the aver-
age percentage of different codes is 49.982% and the
average correlation coefficient is 0.0056992, imply-
ing that the keystream S has no significant corre-
lations with the perturbed keystream Sp and the
streams Sm.

6. Simulation on SESAE

The avalanche effect of the CPRNG is discussed
here, which is used to encrypt an RGB image
“tower” with 250 × 140 pixels, as shown in
Fig. 5(a). The simulation is implemented by using
the Matlab 7.1 platform on a PC computer.

Here, the SESAE experiment procedures on
CPRNG are intentionally designed to be very sim-
ilar to those given in Sec. 3.1.5 in [Min & Chen,
2013]. By using the CPRNG and the SESAE to
encrypt and decrypt the image given in Fig. 5(a),
the results show that decrypted images can be
obtained without errors.

However, if one uses 1000 keystreams generated
by randomly disturbing the initial conditions (5)
and (21), as well as by the matrix (17), for 1000
times in the range |ε| ∈ [10−16, 10−10], then all
decrypted RGB images will become almost pure
white-colored ones.

In these simulations, each of all decrypted
images has 840 000 {0, 1} codes. Among the
decrypted images, the minimum and the maximum
numbers of zeros are 3 and 26, respectively.

Table 8. Differences between the original keystream S0

and the keystreams Sj,i, measured by norm ‖S0 − Sj,i‖.

‖S0 − Sj,i‖ (×10−10)

S3,1 S3,2 S3,3 S4,1 S4,2

S0 2.8142 3.1824 3.2058 2.5598 2.7061

S23,1 S24,1 S24,2 S24,3 S26,1

S0 3.1077 3.1989 2.9631 2.7148 3.0767

Let Gi,j represent the jth image that has i zero
codes. The first five images with a minimum number
of zero codes and the last five images with a maxi-
mum number of zero codes are shown in Figs. 5(c)–
5(l). Note that in order to make the pixels with
brightness less than 255 be visible in the decrypted
images, technically the brightness of the three color
planes of these pixels has been reduced by 150, and
increase the size of those pixels by 9 times.

Therefore, the percentages of the number of “1”
codes in the 1000 decrypted images are within the
range [0.999969, 0.999996], which are all very close
to the ideal value (216 − 1)/216 = 0.999985.

Summarizing the above simulation results, the
CPRNG can generate encrypted images with sig-
nificant avalanche effects SESAE to encrypt RGB
images.

Table 8 lists some statistical data of the devi-
ations (denoted by “norms”) between the original
keystream S0 and the keystreams Si,j used in the
above decrypted image Gi,j . It can be seen that
there are no significant correlations between the
norms and the corresponding decrypted images.

7. Conclusions

The main contributions of this paper are summa-
rized as follows:

(1) Introduced the concept of discrete chaotic maps
with one-line equilibria, and proposed nine such
maps consisting of sine functions

(2) Combined a four-dimensional discrete chaotic
map with one-line equilibria and the GCS the-
orem to design an eight-dimensional DCSLE
GCS system

(3) Constructed a 216 word CPRNG and compared
the simulation results tested by the FIPS 140-
2 test suite and the NIST SP800 test suite on
the keystreams generated by using the CPRNG
(keyspace > 21170), the CPRNG1 (proposed
in [Han et al., 2016], keyspace => 21195), the
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CPRNG2 (introduced in [Zhang et al., 2015],
keyspace => 21116), the RC4 algorithm and
the ZUC algorithm (keyspace = 2128), respec-
tively. It is demonstrated that the randomness
of the sequences generated via the CPRNGs
have promising performances in term of the
SP800-22/FIPS 140-2 tests

(4) An image encryption example has shown that
the designed CPRNG is able to generate sig-
nificant avalanche effects, and the percentage
of “1” codes in the decrypted images for differ-
ent keystreams is larger than 0.999969, which is
very close to the ideal value of (216 − 1)/216 =
0.999985. This demonstrates that the proposed
CPRNG is a qualified candidate for SESAE.

(5) The results may imply that if the 2d word
sequences generated by a 2d word PRNG are
able to pass the 2d word FIPS 140-2 tests with
a high percentage, then the CPRNG has good
performance similar to that of ideal 2d word
PRNG [Min & Chen, 2013].

In summary, the proposed CPRNG is a promis-
ing candidate for practical applications. Further
comparisons with different state-of-the-art PRNG
schemes in terms of computational complexity, com-
munication cost and storage requirement will be
carried out in future research.
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